
MONITOR PATTERN Professor Ken Birman
CS4414 Lecture 15

CORNELL CS4414 - FALL 2020. 1

IDEA MAP FOR TODAY

Today we focus on monitors.

CORNELL CS4414 - FALL 2020. 2

Lightweight vs. Heavyweight

Thread “context”

C++ mutex objects. Atomic data types.

Reminder: Thread Concept

Deadlocks and Livelocks

The monitor pattern in C++

Problems monitors solve (and problems they don’t solve)

A MONITOR IS A “PATTERN”

It uses a scoped_lock to protect a critical section. You designate
the mutex (and can even lock multiple mutexes atomically).

Monitor conditions are variables that a monitor can wait on:
 wait is used to wait. It also (atomically) releases the scoped_lock.
 wait_until and wait_for can also wait for a timed delay to elapse.
 notify_one wakes up a waiting thread… notify_all wakes up all waiting

threads. If no thread is waiting, these are both no-ops.

CORNELL CS4414 - FALL 2020. 3

REMINDER: A SHARED RING BUFFER

This example illustrates a famous pattern in threaded programs:
the producer-consumer scenario

 An application is divided into stages
 One stage has one or more threads that “produce” some objects, like

lines read from files.
 A second stage has one or more threads that “consume” this data,

for example by counting words in those lines.

CORNELL CS4414 - FALL 2020. 4

A RING BUFFER

We take an array of some fixed size, LEN, and think of it as a
ring. The k’th item is at location (k % LEN). Here, LEN = 8

CORNELL CS4414 - FALL 2020. 5

nfree =3
free_ptr = 15

nfull =5
next_item = 10

15 % 8 = 7

10 % 8 = 2

free

free

Item
11

Item
12

Item
13

Item
14

free

Item
10

0

1

2

3
4

5

6

7Producers write
to the end of the

full section

Consumers read
from the head of
the full section

TOOLKIT NEEDED

If multiple producers simultaneously try and produce an item, they
would be accessing nfree and free_ptr simultaneously. Moreover,
filling a slot will also increment nfull.

Producers also need to wait if nfree == 0: The buffer is full.

… and they will want fairness: no producer should get more turns
than the others, if they are running concurrently.

CORNELL CS4414 - FALL 2020. 6

A PRODUCER OR CONSUMER WAITS IF NEEDED

Producer:

void produce(Foo obj)
{

if(nfree == 0) wait;
buffer[next_ptr++ % LEN] = obj;
++nfull;
- - nfree;

}

Consumer:

Foo consume()
{

if(nfull == 0) wait;
++nfree;
- - nfull;
return buffer[next_item++ % LEN];

}

CORNELL CS4414 - FALL 2020. 7

A PRODUCER OR CONSUMER WAITS IF NEEDED

Producer:

void produce(Foo obj)
{

if(nfree == LEN) wait;
buffer[next_ptr++ % LEN] = obj;
++nfull;
- - nfree;

}

Consumer:

Foo produce()
{

if(nfull == 0) wait;
++nfree;
- - nfull;
return buffer[next_item++ % LEN];

}

CORNELL CS4414 - FALL 2020. 8

As written, this code is unsafe… and
we can’t fix it just by adding atomics or locks!

… WHY LOCKING ISN’T SUFFICIENT

Locking won’t help with “waiting until the buffer isn’t empty/full”.

The issue is a chicken-and-egg problem:
 If A holds the lock, but must wait, it has to release the lock or B can’t

get in. But B could run instantly, update the buffer, and do a notify –
which A won’t see because A isn’t yet waiting.

 A needs a way to atomically release the lock and enter the wait state.
C++ atomics don’t cover this case.

CORNELL CS4414 - FALL 2020. 9

DRILL DOWN…

It takes a moment to understand this issue.

With a condition, we atomically enter a wait state and
simultaneously release the monitor lock, we are sure to get any
future notifications.

Any other approach could “miss” a notification.

CORNELL CS4414 - FALL 2020. 10

THE MONITOR PATTERN

Our example turns out to be a great fit to the monitor pattern.

A monitor combines protection of a critical section with
additional operations for waiting and for notification.

For each protected object, you will need a “mutex” object that
will be the associated lock.

CORNELL CS4414 - FALL 2020. 11

SOLUTION TO THE BOUNDED BUFFER
PROBLEM USING A MONITOR PATTERN
We will need a mutex, plus two “condition variables”:

std::mutex bb_mutex;
std::condition_variable not_empty;
std::condition_variable not_full;

… even though we will have two critical sections (one to
produce, one to consume) we use one mutex.

CORNELL CS4414 - FALL 2020. 12

SOLUTION TO THE BOUNDED BUFFER
PROBLEM USING A MONITOR PATTERN
Next, we need our const int LEN, and int variables nfree, nfull,
free_ptr and next_item. Initially everything is free: nfree = LEN;

const int LEN = 8;
int nfree = LEN;
int nfull = 0;
int free_ptr = 0;
int next_item = 0;

CORNELL CS4414 - FALL 2020. 13

nfree =3
free_ptr = 15

nfull =5
next_item = 10

free

free

Item
11

Item
12

Item
13

Item
14

free

Item
10

0

1

2

3
4

5

6

7

SOLUTION TO THE BOUNDED BUFFER
PROBLEM USING A MONITOR PATTERN
Next, we need our const int LEN, and int variables nfree, nfull,
free_ptr and next_item. Initially everything is free: nfree = LEN;

const int LEN = 8;
int nfree = LEN;
int nfull = 0;
int free_ptr = 0;
int next_item = 0;

CORNELL CS4414 - FALL 2020. 14

nfree =3
free_ptr = 15

nfull =5
next_item = 10

free

free

Item
11

Item
12

Item
13

Item
14

free

Item
10

0

1

2

3
4

5

6

7

We don’t declare these as atomic or
volatile because we plan to only

access them only inside our monitor!

Only use those annotations for
“stand-alone” variables accessed

concurrently by threads

CODE TO PRODUCE AN ITEM

void produce(Foo obj)
{

std::unique_lock guard(bb_mutex);
while(nfree == 0)

not_full.wait(guard);
buffer[free_ptr++ % LEN] = obj;
--nfree;
++nfull;
not_empty.notify_one();

}
CORNELL CS4414 - FALL 2020. 15

CODE TO PRODUCE AN ITEM

void produce(Foo obj)
{

std::unique_lock<mutex> guard(bb_mutex);
while(nfree == 0)

not_full.wait(guard);
buffer[free_ptr++ % LEN] = obj;
--nfree;
++nfull;
not_empty.notify_one();

}
CORNELL CS4414 - FALL 2020. 16

This lock is automatically held until
the end of the method, then

released. But it will be temporarily
released for the condition-variable

“wait” if needed, then automatically
reacquired

CODE TO PRODUCE AN ITEM

void produce(Foo obj)
{

std::unique_lock<mutex> guard(bb_mutex);
while(nfree == 0)

not_full.wait(guard);
buffer[free_ptr++ % LEN] = obj;
--nfree;
++nfull;
not_empty.notify_one();

}
CORNELL CS4414 - FALL 2020. 17

The while loop is needed because
there could be multiple threads

trying to produce items at the same
time. Notify would wake all of

them up, so we need the unlucky
ones to go back to sleep!

CODE TO PRODUCE AN ITEM

void produce(Foo obj)
{

std::unique_lock<mutex> guard(bb_mutex);
while(nfree == 0)

not_full.wait(guard);
buffer[free_ptr++ % LEN] = obj;
--nfree;
++nfull;
not_empty.notify_one();

}
CORNELL CS4414 - FALL 2020. 18

A condition variable implements wait in a
way that atomically puts this thread to

sleep and releases the lock. This
guarantees that if notify should wake A

up, A will “hear it”

When A does run, it will also
automatically reaquire the mutex lock.

CODE TO PRODUCE AN ITEM

void produce(Foo obj)
{

std::unique_lock<mutex> guard(bb_mutex);
while(nfree == 0)

not_full.wait(guard);
buffer[free_ptr++ % LEN] = obj;
--nfree;
++nfull;
not_empty.notify_one();

}
CORNELL CS4414 - FALL 2020. 19

We produced one item, so if multiple
consumers are waiting, we just wake one
of them up – no point in using notify_all

CODE TO CONSUME AN ITEM
Foo consume()
{

std::unique_lock<mutex> guard(bb_mutex);
while(nfull == 0)

not_empty.wait(guard);
++nfree;
--nfull;
not_full.notify_one();
return buffer[full_ptr++ % LEN];

}
CORNELL CS4414 - FALL 2020. 20

CODE TO CONSUME AN ITEM
Foo consume()
{

std::unique_lock<mutex> guard(bb_mutex);(bb_mutex);
while(nfull == 0)

not_empty.wait(bb_mutex);
++nfree;
--nfull;
not_full.notify_one();
return buffer[full_ptr++ % LEN];

}
CORNELL CS4414 - FALL 2020. 21

Although the notify occurs before we
read and return the item, the scoped-
lock won’t be released until the end

of the block. Thus the return
statement is still protected by the lock.

DID YOU NOTICE THE “WHILE” LOOPS?

A condition variable is used when some needed property does
not currently hold. It allows a thread to wait.

In most cases, you can’t assume that the property holds when
your thread wakes up after a wait! This is why we often recheck
by doing the test again.

This pattern protects against unexpected scheduling sequences.
CORNELL CS4414 - FALL 2020. 22

CLEANER NOTATION, WITH A LAMBDA

We wrote out the two while loops, so that you would know they
are required.

But C++ has a nicer packaging, using a lambda notation for the
condition in the while loop.

CORNELL CS4414 - FALL 2020. 23

CODE TO PRODUCE AN ITEM

void produce(Foo obj)
{

std::unique_lock<mutex> guard(bb_mutex);
while(nfree == 0)

not_full.wait(guard);
buffer[free_ptr++ % LEN] = obj;
--nfree;
++nfull;
not_empty.notify_one();

}
CORNELL CS4414 - FALL 2020. 24

CODE TO PRODUCE AN ITEM

void produce(Foo obj)
{

std::unique_lock<mutex> guard(bb_mutex);

not_full.wait(guard, [&](){ return nfree != 0;});

buffer[free_ptr++ % LEN] = obj;
--nfree;
++nfull;
not_empty.notify_one();

}

CORNELL CS4414 - FALL 2020. 25

CODE TO PRODUCE AN ITEM

void produce(Foo obj)
{

std::unique_lock guard(bb_mutex);

not_full.wait(guard, [&](){ return nfree != 0;});

buffer[free_ptr++ % LEN] = obj;
--nfree;
++nfull;
not_empty.notify_one();

}

CORNELL CS4414 - FALL 2020. 26

This means “capture all by reference”. The lambda can access any locally
scoped variables by reference.

CODE TO PRODUCE AN ITEM

void produce(Foo obj)
{

std::unique_lock guard(bb_mutex);

not_full.wait(guard, [&](){ return nfree != 0;});

buffer[free_ptr++ % LEN] = obj;
--nfree;
++nfull;
not_empty.notify_one();

}

CORNELL CS4414 - FALL 2020. 27

The condition is “what you are waiting for”, not “why you are waiting”. So
it is actually the negation of what would have been in the while loop!

CODE TO CONSUME AN ITEM
Foo consume()
{

std::unique_lock<mutex> guard(bb_mutex);
while(nfull == 0)

not_empty.wait(guard);
++nfree;
--nfull;
not_full.notify_one();
return buffer[full_ptr++ % LEN];

}

CORNELL CS4414 - FALL 2020. 28

CODE TO CONSUME AN ITEM
Foo consume()
{

std::unique_lock<mutex> guard(bb_mutex);

not_empty.wait(guard, [&]() { return nfull != 0; });

++nfree;
--nfull;
not_full.notify_one();
return buffer[full_ptr++ % LEN];

}
CORNELL CS4414 - FALL 2020. 29

WHY UNIQUE_LOCK?

We learned to use scoped_lock for mutex guards around a
block of code.

unique_lock is a powerful “full featured” locking object, and
condition variables need that power.

CORNELL CS4414 - FALL 2020. 30

A SECOND EXAMPLE

The “readers and writers” pattern captures this style of sharing for
arrays, or for objects like std::list and std::map.

The key observation: a shared data structure can support arbitrary
numbers of concurrent read-only accesses. But an update (a
“writer”) might cause the structure to change, so updates must occur
when no reads are active.

We also need a form of fairness: reads should not starve updates

CORNELL CS4414 - FALL 2020. 31

FIXED VERSION OF THE WHILE LOOPS!

void start_read()
{

std::unique_lock<mutex> guard(mtx);
while (active_writer || writers_waiting)

want_rw.wait(guard);
++active_readers;

}

void end_read()
{

std::unique_lock<mutex> guard(mtx);
if(- -active_readers == 0)

want_rw.notify_all();
}

CORNELL CS4414 - FALL 2020. 32

void start_write()
{

std::unique_lock<mutex> guard(mtx);
+ +writers_waiting;
while (active_writer || active_readers)

want_rw.wait(guard);
- -writers_waiting;
active_writer = true;

}

void end_write()
{

std::unique_lock<mutex> guard(mtx);
active_writer = false;
want_rw.notify_all();

}

std::mutex mtx;
std::condition_variable want_rw;
int active_readers, writers_waiting;
bool active_writer;

… TEMPLATED

void start_read()
{

std::unique_lock<mutex> guard(mtx);
want_rw.wait(guard [&]() { return ! ((active_writer || writers_waiting);

});
++active_readers;

}

void end_read()
{

std::unique_lock<mutex> guard(mtx);
if(- -active_readers == 0)

want_rw.notify_all();
}

CORNELL CS4414 - FALL 2020. 33

void start_write()
{

std::unique_lock<mutex> guard(mtx);
+ +writers_waiting;
want_rw.wait(guard, [&]() { return !(active_writer || active_readers); });
- -writers_waiting;
active_writer = true;

}

void end_write()
{

std::unique_lock<mutex> guard(mtx);
active_writer = false;
want_rw.notify_all();

}

std::mutex mtx;
std::condition_variable want_rw;
int active_readers, writers_waiting;
bool active_writer;

THIS VERSION IS SIMPLE, AND CORRECT.

But it gives waiting writers priority over waiting readers, so it
isn’t fair (an endless stream of writers would starve readers).

In effect, we are assuming that writing is less common than
reading. You can modify it to have the other bias easily (if
writers are common but readers are rare). But a symmetric
solution is very hard to design.

CORNELL CS4414 - FALL 2020. 34

WARNING ABOUT “SPURIOUS WAKEUPS”

Older textbooks will show readers and writers using an “if”
statement, not a while loop. But this is not safe with modern systems.

If you read closely, that old code assumed that a wait only wakes up
in the event of a notify_one or notify_all. But such systems can hang
easily if nobody does a notify – a common bug.

Modern condition variables always wake up after a small delay,
even if the condition isn’t true.

CORNELL CS4414 - FALL 2020. 35

NOTIFY_ALL VERSUS NOTIFY_ONE

notify_all wakes up every waiting thread. We used it here.

One can be fancy and use notify_one to try and make this code
more fair, but it isn’t easy to do because your solution would still
need to be correct with spurious wakeups.

CORNELL CS4414 - FALL 2020. 36

FAIRNESS, FREEDOM FROM STARVATION

Locking solutions for NUMA system map to atomic “test and set”:

This is random, hence “fair”, but not guaranteed to be fair.

CORNELL CS4414 - FALL 2020. 37

std::atomic_flag lock_something = ATOMIC_FLAG_INIT;

while (lock_something.test_and_set()) {} // Threads loop waiting, here

cout << “My thread is inside the critical section!” << endl;

lock_stream.clear();

BASICALLY, WE DON’T WORRY ABOUT
FAIRNESS
Standard code focuses on safety (nothing bad will happen) and
liveness (eventually, something good will happen).

Fairness is a wonderful concept but brings too much complexity.

So we trust in randomness to give us an adequate
approximation to fairness.

CORNELL CS4414 - FALL 2020. 38

KEEP LOCK BLOCKS SHORT

It can be tempting to just get a lock and then do a whole lot of
work while holding it.

But keep in mind that if you really needed the lock, some thread
may be waiting this whole time!

So… you’ll want to hold locks for as short a period as feasible.

CORNELL CS4414 - FALL 2020. 39

RESIST THE TEMPTATION TO RELEASE A LOCK
WHILE YOU STILL NEED IT!
Suppose threads A and B share:

std::map<std::string, int> myMap;

Now, A executes:

Are both lines part of the critical section?

CORNELL CS4414 - FALL 2020. 40

auto item = myMap[some_city];
cout << “ City of “ << item.first << “, population = “ << item.second << endl;

HOW TO FIX THIS?

We can protect both lines with a scoped_lock:

CORNELL CS4414 - FALL 2020. 41

std::mutex mtx;
….
{

std::scoped_lock lock(mtx);
auto item = myMap[some_city];
cout << “ City of “ << item.first << “, population = “ << item.second << endl;

}

… BUT THIS COULD BE SLOW

Holding a lock for long enough to format and print data will
take a long time.

Meanwhile, no thread can obtain this same lock.

CORNELL CS4414 - FALL 2020. 42

ONE IDEA: PRINT OUTSIDE THE SCOPE

CORNELL CS4414 - FALL 2020. 43

Tempting change:

… but is this a correct piece of code?

std::mutex mtx;
std::pair<std::string,int> item;
{

std::scoped_lock lock(mtx);
item = myMap[some_city];

}
cout << “ City of “ << item.first << “, population = “ << item.second << endl;

BUT NOW THE PRINT STATEMENT HAS NO LOCK

No! This change is unsafe, for two reasons:
 Some thread could do something replace the std::pair that contains

Ithaca with a different object. A would have a “stale” reference.
 Both std::map and std::pair are implemented in a non-thread-safe

libraries. If any thread could do any updates, a reader must view the
whole structure as a critical section!

CORNELL CS4414 - FALL 2020. 44

HOW DID FAST-WC HANDLE THIS?

In fast-wc, we implemented the code to never have concurrent
threads accessing the same std::map!

Any given map was only read or updated by a single thread.

This does assume that std::map has no globals that somehow
could be damaged by concurrent access to different maps, but
in fact the library does have that guarantee.

CORNELL CS4414 - FALL 2020. 45

ARE THERE OTHER WAYS TO HANDLE AN
ISSUE LIKE THIS?
A could safely make a copy of the item it wants to print, exit the
lock scope, then print from the copy.

We could use two levels of locking, one for the map itself, a
second for std::pair objects in the map.

We could add a way to “mark” an object as “in use by
someone” and write code to not modify such an object.

CORNELL CS4414 - FALL 2020. 46

BUT BE CAREFUL!

The more subtle your synchronization logic becomes, the harder
the code will be to maintain or even understand.

Simple, clear synchronization patterns have a benefit: anyone
can easily see what you are doing!

This often causes some tradeoffs between speed and clarity.

CORNELL CS4414 - FALL 2020. 47

REMARK: OLDER PATTERNS

C++ has evolved in this area, and has several templates for lack
management. Unfortunately, they have duplicated functions

unique_lock -- very general, flexible, powerful. But use this
only if you actually need all its features.

lock_guard -- a C++ 11 feature, but it turned out to be
buggy in some situations. Deprecated.

scoped_lock -- C++ 17, can lock multiple mutex objects in one
deadlock-free atomic action.

CORNELL CS4414 - FALL 2020. 48

MONITOR SUMMARY

atomic<t> for base types (int, float, etc), volatile, test-and-set…

unique_lock and scoped_lock (C++ 17).

Monitor pattern: combines a mutex with condition variables to
offer protection as well as a wait and notify mechanism, all
integrated with locking in an atomic and safe way.

CORNELL CS4414 - FALL 2020. 49

	Monitor Pattern
	Idea Map For Today
	A monitor is a “pattern”
	Reminder: A shared ring buffer
	A ring buffer
	Toolkit needed
	A producer or consumer waits if needed
	A producer or consumer waits if needed
	… why Locking isn’t sufficient
	Drill down…
	The monitor pattern
	Solution to the bounded buffer problem using a monitor pattern
	Solution to the bounded buffer problem using a monitor pattern
	Solution to the bounded buffer problem using a monitor pattern
	Code to produce an item
	Code to produce an item
	Code to produce an item
	Code to produce an item
	Code to produce an item
	Code to consume an item
	Code to consume an item
	Did you Notice the “while” loops?
	Cleaner Notation, with a Lambda
	Code to produce an item
	Code to produce an item
	Code to produce an item
	Code to produce an item
	Code to consume an item
	Code to consume an item
	Why unique_lock?
	A second example
	Fixed version of the while loops!
	… templated
	This version Is simple, and correct.�
	Warning about “spurious wakeups”
	Notify_all versus notify_one
	Fairness, freedom from starvation
	Basically, we don’t worry about fairness
	Keep lock blocks short
	Resist the temptation to release a lock while you still need it!
	How to fix this?
	… but this could be slow
	One idea: print outside the scope
	But now the print statement has no lock
	How did fast-wc handle this?
	Are there other ways to handle an issue like this?
	But be careful!
	Remark: Older patterns
	monitor summary

