
LINKING… HOW BASIC MECHANISMS
ENABLE SOPHISTICATED WRAPPERS

Professor Ken Birman
CS4414 Lecture 12

CORNELL CS4414 - FALL 2020. 1

SYSTEMS PROGRAMMING IS ABOUT TAKING
CONTROL OVER EVERYTHING
We have seen that a systems programmer learns to “program”
the hardware, operating system and software, including the
C++ compiler itself, which we “program” via templates.

Today we will look at how linking works, and by doing so, we
will discover another obscure example of a programmable
feature that you might not normally expect to be able to control!

CORNELL CS4414 - FALL 2020. 2

CORE SCENARIO

We are given a system that has pre-implemented programs in it
(compiled code plus libraries).

But now we want to change the behavior of some existing API.

Can it be done?

CORNELL CS4414 - FALL 2020. 3

IDEA MAP FOR TODAY

CORNELL CS4414 - FALL 2020. 4

Compiling to an
object file

Static versus dynamic linking in Linux.

Dynamic linking: -shared -fPIC compilation.
DLL segments, issue of base address

Libraries

Wrappers for method interpositioning: a
“super hacker” technique!

Main part of lecture.
Be sure to understand this.

Insane/weird part, introduces
some amazing features

LINKING

A linker takes a collection of object files and combines them into an
object file. But this object file will still depend on libraries.

Next it cross-references this single object file against libraries,
resolving any references to methods or constants in those libraries.

If everything needed has been found, it outputs an executable image.

CORNELL CS4414 - FALL 2020. 5

Your code

+ =
Std:xxx libraries

Libraries your
company created

Statically linked
object files

Executable

Compile time… … Runtime

EXAMPLE C PROGRAM (C++ IS THE SAME)

int sum(int *a, int n);

int array[2] = {1, 2};

int main(int argc, char** argv)
{

int val = sum(array, 2);
return val;

}

int sum(int *a, int n)
{

int i, s = 0;

for (i = 0; i < n; i++) {
s += a[i];

}
return s;

}
main.c sum.c

LINKING Gcc is really a “compiler driver”: It launches a series of sub-programs
linux> gcc -Og -o prog main.c sum.c
linux> ./prog

Linker (ld)

Translators
(cpp, cc1, as)

main.c

main.o

Translators
(cpp, cc1, as)

sum.c

sum.o

prog

Source files

Separately compiled
relocatable object files

Fully linked executable object file
(contains code and data for all functions
defined in main.c and sum.c)

WHY LINKERS? REASON 1: MODULARITY

Program can be written as a collection of smaller source files, rather than
one monolithic mass. But later we need to combine all of these.

Each C++ class normally has its own hpp file (declares the type
signatures of the methods and fields) and a separate cpp file
(implements the class).

For fancy templated classes, C++ itself creates the needed cpp files, one
for each distinct type-parameters list.

AN OBJECT FILE IS AN INTERMEDIATE FORM

An object file contains “incomplete” machine instructions, with
locations that may still need to be filled in:
 Addresses of methods defined in other object files, or libraries
 Addresses of data and bss segments, in memory

After linking, all the “resolved” addresses will have been inserted at
those previously unresolved locations in the object file.

CORNELL CS4414 - FALL 2020. 9

REASON 2: LIBRARIES

Libraries aggregate common functions or classes.

Static linking combines modules of a program, but also
used to be the main way of linking to libraries:
 Executables include copies of any library modules they reference

(but just those .o files, not others in the library)
 Executable is complete and self-sufficient. It should run on any

machine with a compatible architecture.

REASON 2: LIBRARIES

Dynamic linking is more common today
 Your executable program doesn’t need to contain library code
 At execution, single copy of library code is shared, but the dynamic

linker does need to be able to find the library file (a “.so” file)

If a dynamically linked executable is launched on a machine that lacks
the DLL, you will get an error message (usually, on startup, but there are
some obscure cases where it happens later, when the DLL is needed)

HOW LINKING WORKS: SYMBOL RESOLUTION

Programs define and reference symbols (global variables and
functions):
 void swap() {…} /* define symbol swap */
 swap(); /* reference symbol swap */
 int *xp = &x; /* define symbol xp, reference x */

Symbol definitions are stored in object file in the symbol table.
 Symbol table is an array of entries
 Each table entry includes name, type, size, and location of symbol.
 With C++ the “location” is the “namespace” that declared the class

… THREE CASES

A symbol can be defined by the object file.

It can be undefined, in which case the linker is required to find
the definition and link the object file to the definition.

It can be multiply defined. This is normally an error… but we
will see one tricky way that it can be done, and even be useful!

CORNELL CS4414 - FALL 2020. 13

SYMBOLS IN EXAMPLE C PROGRAM

int sum(int *a, int n);

int array[2] = {1, 2};

int main(int argc, char** argv)
{

int val = sum(array, 2);
return val;

}

int sum(int *a, int n)
{

int i, s = 0;

for (i = 0; i < n; i++) {
s += a[i];

}
return s;

}
main.c sum.c

Definitions

Reference

LINKERS CAN “MOVE THINGS AROUND”. WE
CALL THIS “RELOCATION”

A linker merges code and data sections into single sections

 As part of this it relocates symbols from their relative locations in the
.o files to their final absolute memory locations in the executable.

 It updates references to these symbols to reflect their new positions.

OBJECT FILE FORMAT (ELF)

Elf header
Word size, byte ordering, file type (.o, exec, .so), machine type, etc.

Segment header table
 Page size, virtual address memory segments + sizes.

.text section (code)

.rodata section (read-only data, jump offsets, strings)

.data section (initialized global variables)

.bss section (name “bss” is lost in history)
 Global variables that weren’t initialized: zeros.
 Has section header but occupies no space

ELF header

Segment header table
(required for executables)

.text section

.rodata section

.bss section

.symtab section

.rel.txt section

.rel.data section

.debug section

Section header table

0

.data section

ELF OBJECT FILE FORMAT (CONT.)

.symtab section
Symbol table
Procedure and static variable names
Section names and locations

.rel.text section
Relocation info for .text section
Addresses of instructions that will need to be modified in the executable
Instructions for modifying

.rel.data section
Relocation info for .data section
Addresses of pointer data that will need to be modified in the merged executable

.debug section
Info for symbolic debugging (gcc -g)

Section header table
Offsets and sizes of each section

ELF header

Segment header table
(required for executables)

.text section

.rodata section

.bss section

.symtab section

.rel.txt section

.rel.data section

.debug section

Section header table

0

.data section

LINKER SYMBOLS

Global symbols
Symbols defined by module m that can be referenced by other modules.
e.g., non-static C functions and non-static global variables.

External symbols
Global symbols that are referenced by module m but defined by some other module.

Local symbols
Symbols that are defined and referenced exclusively by module m.
e.g, C functions and global variables defined with the static attribute.
Local linker symbols are not local program variables

EXAMPLE OF SYMBOL RESOLUTION

int sum(int *a, int n);

int array[2] = {1, 2};

int main(int argc,char **argv)
{

int val = sum(array, 2);
return val;

} main.c

int sum(int *a, int n)
{

int i, s = 0;

for (i = 0; i < n; i++) {
s += a[i];

}
return s;

} sum.c

Referencing
a global…

Defining
a global

Linker knows
nothing of val

Referencing
a global…

…that’s defined here

Linker knows
nothing of i or s

…that’s defined here

• incr
• foo
• a
• argc
• argv
• b
• main
• printf
• Others?

SYMBOL IDENTIFICATION
Which of the following names will be in the symbol
table of symbols.o?

symbols.c:

int incr = 1;
static int foo(int a) {
int b = a + incr;
return b;

}

int main(int argc,
char* argv[]) {

printf("%d\n", foo(5));
return 0;

}

Names:

• incr
• foo
• a
• argc
• argv
• b
• main
• printf
• "%d\n"

Can find this with readelf:
linux> readelf –s symbols.o

LOCAL SYMBOLS
Local non-static C variables vs. local static C variables
Local non-static C variables: stored on the stack
Local static C variables: stored in either .bss or .data

static int x = 15;

int f() {
static int x = 17;
return x++;

}

int g() {
static int x = 19;
return x += 14;

}

int h() {
return x += 27;

}

Compiler allocates space in .data for
each definition of x

Creates local symbols in the symbol
table with unique names, e.g., x,
x.1721 and x.1724.

static-local.c

HOW LINKER RESOLVES DUPLICATE SYMBOL
DEFINITIONS
Program symbols are either strong or weak
 Strong: methods (code blocks) and initialized globals
 Weak: uninitialized globals (or with specifier extern)

… but be aware that the “weak” case can cause real trouble!

int foo=5;

p1() {
}

int foo;

p2() {
}

p1.c p2.c

strong

weak

strong

strong

LINKER WITH MULTIPLE WEAK DECLARATIONS

int x;
p1() {}

int x;
p2() {}

int x;
int y;
p1() {}

double x;
p2() {}

int x=7;
int y=5;
p1() {}

double x;
p2() {}

int x=7;
p1() {}

int x;
p2() {}

int x;
p1() {} p1() {} Link time error: two strong symbols (p1)

References to x will refer to the same
uninitialized int. Is this what you really want?

Writes to x in p2 might overwrite y!
Evil!

Writes to x in p2 might overwrite y!
Nasty!

Important: Linker does not do type checking. But C++ “namespaces” create a private naming scope.

References to x will refer to the same initialized
variable.

/* Global strong symbol */
double x = 3.14;

GLOBAL TYPE MISMATCHES CAUSE BUGS

Compiles without any errors or warnings, yet this is a bug!

What gets printed?

long int x; /* Weak symbol */

int main(int argc,
char *argv[]) {

printf("%ld\n", x);
return 0;

}

/* Global strong symbol */
double x = 3.14;

mismatch-variable.cmismatch-main.c

LINKING EXAMPLE

int sum(int *a, int n);

int array[2] = {1, 2};

int main(int argc,char **argv)
{

int val = sum(array, 2);
return val;

} main.c

int sum(int *a, int n)
{

int i, s = 0;

for (i = 0; i < n; i++) {
s += a[i];

}
return s;

} sum.c

C++ won’t check to confirm that this array actually has n elements!
The pointer (to array[]) that sum received doesn’t tell C++ anything
about the underlying object type or size…

STEP 2: RELOCATION

main()

main.o

sum()

sum.o

System code

int array[2]={1,2}

System data

Relocatable Object Files

.text

.data

.text

.data

.text

Headers

main()

sum()

0

More system code

Executable Object File

.text

.symtab
.debug

.data

System code

System data

int array[2]={1,2}

RELOCATION ENTRIES

Source: objdump –r –d main.o

0000000000000000 <main>:
0: 48 83 ec 08 sub $0x8,%rsp
4: be 02 00 00 00 mov $0x2,%esi
9: bf 00 00 00 00 mov $0x0,%edi # %edi = &array

a: R_X86_64_32 array # Relocation entry

e: e8 00 00 00 00 callq 13 <main+0x13> # sum()
f: R_X86_64_PC32 sum-0x4 # Relocation entry

13: 48 83 c4 08 add $0x8,%rsp
17: c3 retq

main.o

int array[2] = {1, 2};

int main(int argc, char**
argv)
{

int val = sum(array, 2);
return val;

} main.c

RELOCATED .TEXT SECTION
00000000004004d0 <main>:

4004d0: 48 83 ec 08 sub $0x8,%rsp
4004d4: be 02 00 00 00 mov $0x2,%esi
4004d9: bf 18 10 60 00 mov $0x601018,%edi # %edi = &array
4004de: e8 05 00 00 00 callq 4004e8 <sum> # sum()
4004e3: 48 83 c4 08 add $0x8,%rsp
4004e7: c3 retq

00000000004004e8 <sum>:
4004e8: b8 00 00 00 00 mov $0x0,%eax
4004ed: ba 00 00 00 00 mov $0x0,%edx
4004f2: eb 09 jmp 4004fd <sum+0x15>
4004f4: 48 63 ca movslq %edx,%rcx
4004f7: 03 04 8f add (%rdi,%rcx,4),%eax
4004fa: 83 c2 01 add $0x1,%edx
4004fd: 39 f2 cmp %esi,%edx
4004ff: 7c f3 jl 4004f4 <sum+0xc>
400501: f3 c3 repz retq

callq instruction uses PC-relative addressing for sum():
0x4004e8 = 0x4004e3 + 0x5

Source: objdump -d prog

LOADING EXECUTABLE OBJECT FILES
ELF header

Program header table
(required for executables)

.text section

.data section

.bss section

.symtab

.debug

Section header table
(required for relocatables)

0
Executable Object File Kernel virtual memory

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused
0

%rsp
(stack
pointer)

Memory
invisible to
user code

brk

0x400000

Read/write data segment
(.data, .bss)

Read-only code segment
(.init, .text, .rodata)

Loaded
from
the
executable
file

.rodata section

.line

.init section

.strtab

STATIC LIBRARIES

Translator

atoi.c

atoi.o

Translator

printf.c

printf.o

libc.a

Archiver (ar)

... Translator

random.c

random.o

unix> ar rs libc.a \
atoi.o printf.o … random.o

C standard library, static version

 Archiver creates a single file that contains all the .o files, plus a lookup
table (basically, a “directory”) that the linker can use to find the files.

COMMONLY USED LIBRARIES
libc.a (the C standard library)
4.6 MB archive of 1496 object files.

I/O, memory allocation, signal handling, string handling, data and time, random
numbers, integer math

libm.a (the C math library)
2 MB archive of 444 object files.

floating point math (sin, cos, tan, log, exp, sqrt, …)

% ar –t /usr/lib/libc.a | sort
…
fork.o
…
fprintf.o
fpu_control.o
fputc.o
freopen.o
fscanf.o
fseek.o
fstab.o
…

% ar –t /usr/lib/libm.a | sort
…
e_acos.o
e_acosf.o
e_acosh.o
e_acoshf.o
e_acoshl.o
e_acosl.o
e_asin.o
e_asinf.o
e_asinl.o
…

LINKING WITH
STATIC LIBRARIES

#include <stdio.h>
#include "vector.h"

int x[2] = {1, 2};
int y[2] = {3, 4};
int z[2];

int main(int argc, char**
argv)
{

addvec(x, y, z, 2);
printf("z = [%d %d]\n”,

z[0], z[1]);
return 0;

}
main2.c

void addvec(int *x, int *y,
int *z, int n) {

int i;

for (i = 0; i < n; i++)
z[i] = x[i] + y[i];

}

void multvec(int *x, int *y,
int *z, int n)

{
int i;

for (i = 0; i < n; i++)
z[i] = x[i] * y[i];

} multvec.c

addvec.c

libvector.a

LINKING WITH STATIC LIBRARIES

Translators
(cpp, cc1, as)

main2.c

main2.o

libc.a

Linker (ld)

prog2c

printf.o and any other
modules called by printf.o

libvector.a

addvec.o

Static libraries

Relocatable
object files

Fully linked
executable object file
(861,232 bytes)

vector.h Archiver
(ar)

addvec.o multvec.o

“c” for “compile-time”

unix> gcc –static –o prog2c \
main2.o -L. -lvector

USING STATIC LIBRARIES
Linker’s algorithm for resolving external references:
Scan .o files and .a files in the command line order.
During the scan, keep a list of the current unresolved references.
As each new .o or .a file, obj, is encountered, try to resolve
each unresolved reference in the list against the symbols defined
in obj.
If any entries in the unresolved list at end of scan, then error.

Problem:
Command line order matters!
Moral: put libraries at the end of the command line.

unix> gcc -static -o prog2c -L. -lvector main2.o
main2.o: In function `main':
main2.c:(.text+0x19): undefined reference to `addvec'
collect2: error: ld returned 1 exit status

SHARED LIBRARIES

Static libraries have the following disadvantages:
 Duplication in the stored executables (every function needs libc)
 Duplication in the running executables
 Minor bug fixes in system libraries? Must rebuild everything!

Example: hugely disruptive 2016 library issue:
https://security.googleblog.com/2016/02/cve-2015-7547-glibc-

getaddrinfo-stack.html

https://security.googleblog.com/2016/02/cve-2015-7547-glibc-getaddrinfo-stack.html

SHARED LIBRARIES

Shared libraries save space and resolve this issue.

Term refers to:
 Object files that contain code and data.
 Saved in a special directly (LOADPATH points to it).
 Loaded and linked into an application dynamically, at either load-time

or run-time
 Also called: dynamic link libraries, DLLs, .so files

DYNAMIC LIBRARY EXAMPLE

Translator

addvec.c

addvec.o

Translator

multvec.c

multvec.o

libvector.so

Loader (ld)

unix> gcc -shared -o libvector.so \
addvec.o multvec.o

Dynamic vector library

unix> gcc –Og –c addvec.c multvec.c -fpic

DYNAMIC LINKING AT LOAD-TIME

Translators
(cpp, cc1, as)

main2.c

main2.o

libc.so
libvector.so

Linker (ld)

prog2l

Dynamic linker (ld-linux.so)

Relocation and symbol
table info

libc.so
libvector.so

Code and data

Partially linked
executable object file

(8488 bytes)

Relocatable
object file

Fully linked
executable
in memory

vector.h

Loader
(execve)

unix> gcc -shared -o libvector.so \
addvec.c multvec.c -fpic

unix> gcc –o prog2l \
main2.o ./libvector.so

FOR DYNAMIC LINKING, RELOCATION
OCCURS AT RUNTIME
If a program uses a library, the operating system maps it into
memory. The single copy can then be shared

Then a “dynamic linking” module runs to connect the executable to
the mapped library segment.
 It may have a different base address in each address

space, creating a need for dynamic relocation.
 We also create a copy of the data segments of the library

for each process using it, so that any changes are private.

CORNELL CS4414 - FALL 2020. 39

DYNAMIC LINKING AT RUN-TIME
#include <stdio.h>
#include <stdlib.h>
#include <dlfcn.h>

int x[2] = {1, 2};
int y[2] = {3, 4};
int z[2];

int main(int argc, char** argv)
{

void *handle;
void (*addvec)(int *, int *, int *, int);
char *error;

/* Dynamically load the shared library that contains addvec() */
handle = dlopen("./libvector.so", RTLD_LAZY);
if (!handle) {

fprintf(stderr, "%s\n", dlerror());
exit(1);

}
. . . dll.c

DYNAMIC LINKING AT RUN-TIME (CONT’D)
...

/* Get a pointer to the addvec() function we just loaded */
addvec = dlsym(handle, "addvec");
if ((error = dlerror()) != NULL) {

fprintf(stderr, "%s\n", error);
exit(1);

}

/* Now we can call addvec() just like any other function */
addvec(x, y, z, 2);
printf("z = [%d %d]\n", z[0], z[1]);

/* Unload the shared library */
if (dlclose(handle) < 0) {

fprintf(stderr, "%s\n", dlerror());
exit(1);

}
return 0;

} dll.c

DYNAMIC LINKING AT RUN-TIME

Translators
(cpp, cc1, as)

dll.c

dll.o

libc.so

Linker (ld)

prog2r

Dynamic linker (ld-linux.so)

Relocation and symbol
table info

libc.so

Code and data

Partially linked
executable object file

(8784 bytes)

Runtime-
relocatable
object file

Fully linked
executable
in memory

vector.h

Loader
(execve)

unix> gcc -shared -o libvector.so \
addvec.c multvec.c -fpic

Call to dynamic linker via dlopen

libvector.so

unix> gcc -rdynamic –o prog2r \
dll.o -ldl

GCC OPTIONS USED HERE

1) –shared, -fpic: To create position independent code (next slide)

2) –o something.so: To output result as a DLL

3) –rdynamic: Includes dynamic symbol names for gprof, gdb

4) –ldr: “dr” is the directory to look for the .so file in

CORNELL CS4414 - FALL 2020. 43

DYNAMIC LOADING REQUIRES THAT THE SHARED
LIBRARY BE RELOCATABLE, BUT MORE…

With mapped files (Linux mmap API), the segment can be a
different base address in each process.

So… not only does each process see the DLL at a different
location in memory, the DLL sees itself there too!

And in fact each also has its own data segment

CORNELL CS4414 - FALL 2020. 44

SOLUTION INVOLVES TWO ASPECTS

We compile the library with –shared –fPIC. This tells the compiler to
generate “register offset” addressing

Then, at runtime, whenever we call into the shared library, we need
to put the code segment base address in a specific register (save the
old value to the stack!), and the data segment base into a second
register (“ “ “). Restore the original values when the method returns.

With –fPIC, all jumps and data accesses in the DLL are “relativized”
as offsets with respect to these registers.

CORNELL CS4414 - FALL 2020. 45

RUNTIME ERRORS

At runtime, your program searches for the .so file

What if it can’t find it?
 You will get an error message during execution, and the executable

will terminate. Depending on the version of Linux, this occurs when
you launch the program, or when it tries to access something in the dll

Some dll files also have “versioning” data. On these, your program might
crash because of an “incompatible dll version number”

CORNELL CS4414 - FALL 2020. 46

LINKING SUMMARY

Linking is a technique that allows programs to be constructed from
multiple object files

Linking can happen at different times in a program’s lifetime:
Compile time (when a program is compiled)
Load time (when a program is loaded into memory)
Run time (while a program is executing)

Understanding linking can help you avoid nasty errors and make you
a better programmer

GETTING VERY FANCY: LIBRARY
INTERPOSITIONING (FOR SERIOUS HACKERS!)
Documented in Section 7.13 of book
Library interpositioning: powerful linking technique that allows
programmers to intercept calls to arbitrary functions
Interpositioning can occur at:
Compile time: When the source code is compiled
Link time: When the relocatable object files are statically linked to form
an executable object file
Load/run time: When an executable object file is loaded into memory,
dynamically linked, and then executed.

1-2-3 RECIPE FOR INTERPOSITIONING

Given an executable that obtains something from a library.

Create a .o file that defines something, using the same API the
executable expected. Relink the executable against your .o file.

Now your implementation of something will be called

CORNELL CS4414 - FALL 2020. 49

1-2-3 RECIPE FOR INTERPOSITIONING

… but what if you wanted to call the standard something from
inside your replacement?

If it were to call something, that would just be a recursive call.

… So, have it call _something. This will be undefined… claim
that it is in a library

CORNELL CS4414 - FALL 2020. 50

1-2-3 RECIPE FOR INTERPOSITIONING

So now we have the original executable, and it calls your version
of something, which calls _something.

Create a new DLL library that defines _something. It calls the
original something, from the original DLL.

Now we have “wrapped” something!

CORNELL CS4414 - FALL 2020. 51

… SHORTCUT

There are also linker arguments you can use to just tell the linker
you wish to wrap some method.

Eliminates the need to create the extra helper DLL.

Time permitting, I’ll show you an example that wraps malloc

CORNELL CS4414 - FALL 2020. 52

SOME INTERPOSITIONING APPLICATIONS

Security
 Confinement (sandboxing)
 Behind the scenes encryption

Debugging
 In 2014, two Facebook engineers debugged a treacherous 1-year old bug in their iPhone

app using interpositioning
 Code in the SPDY networking stack was writing to the wrong location
 Solved by intercepting calls to Posix write functions (write, writev, pwrite)

 Source: Facebook engineering blog post at:
 https://code.facebook.com/posts/313033472212144/debugging-file-corruption-on-ios/

SOME INTERPOSITIONING APPLICATIONS

Monitoring and Profiling
 Count number of calls to functions
 Characterize call sites and arguments to functions
 Malloc tracing
 Detecting memory leaks
 Generating address traces

Changing a local resource into one accessed over a network

EXAMPLE PROGRAM
Goal: trace the addresses and sizes of the
allocated and freed blocks, without
breaking the program, and without
modifying the source code.

Three solutions: interpose on the library
malloc and free functions at compile
time, link time, and load/run time.

#include <stdio.h>
#include <malloc.h>
#include <stdlib.h>

int main(int argc,
char *argv[])

{
int i;
for (i = 1; i < argc; i++) {
void *p =

malloc(atoi(argv[i]));
free(p);

}
return(0);

} int.c

We won’t cover this example if we are short on time; it is not required and you won’t see questions about these slides on a quiz

COMPILE-TIME INTERPOSITIONING
#ifdef COMPILETIME
#include <stdio.h>
#include <malloc.h>

/* malloc wrapper function */
void *mymalloc(size_t size)
{

void *ptr = malloc(size);
printf("malloc(%d)=%p\n", (int)size, ptr);
return ptr;

}

/* free wrapper function */
void myfree(void *ptr)
{

free(ptr);
printf("free(%p)\n", ptr);

}
#endif mymalloc.c

Time permitting

COMPILE-TIME INTERPOSITIONING
#define malloc(size) mymalloc(size)
#define free(ptr) myfree(ptr)

void *mymalloc(size_t size);
void myfree(void *ptr);

malloc.h

linux> make intc
gcc -Wall -DCOMPILETIME -c mymalloc.c
gcc -Wall -I. -o intc int.c mymalloc.o
linux> make runc
./intc 10 100 1000
malloc(10)=0x1ba7010
free(0x1ba7010)
malloc(100)=0x1ba7030
free(0x1ba7030)
malloc(1000)=0x1ba70a0
free(0x1ba70a0)
linux>

Search for <malloc.h> leads to

Search for <malloc.h> leads to
/usr/include/malloc.h

Time permitting

LINK-TIME INTERPOSITIONING
#ifdef LINKTIME
#include <stdio.h>

void *__real_malloc(size_t size);
void __real_free(void *ptr);

/* malloc wrapper function */
void *__wrap_malloc(size_t size)
{

void *ptr = __real_malloc(size); /* Call libc malloc */
printf("malloc(%d) = %p\n", (int)size, ptr);
return ptr;

}

/* free wrapper function */
void __wrap_free(void *ptr)
{

__real_free(ptr); /* Call libc free */
printf("free(%p)\n", ptr);

}
#endif mymalloc.c

Time permitting

LINK-TIME INTERPOSITIONING

The “-Wl” flag passes argument to linker, replacing each comma with a
space.
The “--wrap,malloc ” arg instructs linker to resolve references
in a special way:
 Refs to malloc should be resolved as __wrap_malloc
 Refs to __real_malloc should be resolved as malloc

linux> make intl
gcc -Wall -DLINKTIME -c mymalloc.c
gcc -Wall -c int.c
gcc -Wall -Wl,--wrap,malloc -Wl,--wrap,free -o intl \

int.o mymalloc.o
linux> make runl
./intl 10 100 1000
malloc(10) = 0x91a010
free(0x91a010)
. . .

Search for <malloc.h> leads to
/usr/include/malloc.h

Time permitting

#ifdef RUNTIME
#define _GNU_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <dlfcn.h>

/* malloc wrapper function */
void *malloc(size_t size)
{

void *(*mallocp)(size_t size);
char *error;

mallocp = dlsym(RTLD_NEXT, "malloc"); /* Get addr of libc malloc */
if ((error = dlerror()) != NULL) {

fputs(error, stderr);
exit(1);

}
char *ptr = mallocp(size); /* Call libc malloc */
printf("malloc(%d) = %p\n", (int)size, ptr);
return ptr;

}

LOAD/RUN-TIME
INTERPOSITIONING

mymalloc.c

Observe that we DON’T have
#include <malloc.h>

Time permitting

LOAD/RUN-TIME INTERPOSITIONING

/* free wrapper function */
void free(void *ptr)
{

void (*freep)(void *) = NULL;
char *error;

if (!ptr)
return;

freep = dlsym(RTLD_NEXT, "free"); /* Get address of libc free */
if ((error = dlerror()) != NULL) {

fputs(error, stderr);
exit(1);

}
freep(ptr); /* Call libc free */
printf("free(%p)\n", ptr);

}
#endif mymalloc.c

Time permitting

LOAD/RUN-TIME INTERPOSITIONING

The LD_PRELOAD environment variable tells the dynamic
linker to resolve unresolved refs (e.g., to malloc)by looking in
mymalloc.so first.
Type into (some) shells as:
env LD_PRELOAD=./mymalloc.so ./intr 10 100 1000)

linux> make intr
gcc -Wall -DRUNTIME -shared -fpic -o mymalloc.so mymalloc.c -ldl
gcc -Wall -o intr int.c
linux> make runr
(LD_PRELOAD="./mymalloc.so" ./intr 10 100 1000)
malloc(10) = 0x91a010
free(0x91a010)
. . .
linux>

Search for <malloc.h> leads to
/usr/include/malloc.h

Time permitting

INTERPOSITIONING RECAP

Compile Time
 Apparent calls to malloc/free get macro-expanded into calls to mymalloc/myfree
 Simple approach. Must have access to source & recompile

Link Time
 Use linker trick to have special name resolutions
 malloc __wrap_malloc
 __real_malloc malloc

Load/Run Time
 Implement custom version of malloc/free that use dynamic linking to load library

malloc/free under different names
 Can use with ANY dynamically linked binary
env LD_PRELOAD=./mymalloc.so gcc –c int.c)

Time permitting

LINKING SUMMARY

Usually: Just happens, no big deal

But there are many sophisticated features and options!

When using these fancier options, expect strange errors
 Bad symbol resolution
 Ordering dependence of linked .o, .a, and .so files

For power users, it takes effort but then you can do:
 Interpositioning to trace programs with & without source

	Linking… How Basic Mechanisms enable sophisticated wrappers
	Systems Programming is about taking control over everything
	Core scenario
	Idea Map For Today
	Linking
	Example C Program (C++ is the same)
	Linking
	Why Linkers? Reason 1: Modularity
	an object file is an intermediate form
	Reason 2: Libraries
	Reason 2: Libraries
	How linking works: Symbol resolution
	… three cases
	Symbols in Example C Program
	Linkers can “move things around”. We call this “relocation”
	Object File Format (ELF)
	ELF Object File Format (cont.)
	Linker Symbols	
	Example of Symbol Resolution
	Symbol Identification
	Local Symbols
	How Linker Resolves Duplicate Symbol Definitions
	Linker with multiple weak declarations
	Global Type Mismatches cause bugs
	Linking Example
	Step 2: Relocation
	Relocation Entries
	Relocated .text section
	Loading Executable Object Files
	Static Libraries
	Commonly Used Libraries
	Linking with Static Libraries
	Linking with Static Libraries
	Using Static Libraries
	Shared Libraries
	Shared Libraries
	Dynamic Library Example
	Dynamic Linking at Load-time
	for Dynamic linking, relocation occurs at runtime
	Dynamic Linking at Run-time
	Dynamic Linking at Run-time (cont’d)
	Dynamic Linking at Run-time
	Gcc options used here
	Dynamic loading requires that the shared library be relocatable, but more…
	Solution involves two aspects
	Runtime errors
	Linking Summary	
	Getting very fancy: Library Interpositioning (for serious hackers!)
	1-2-3 Recipe for Interpositioning
	1-2-3 Recipe for Interpositioning
	1-2-3 Recipe for Interpositioning
	… shortcut
	Some Interpositioning Applications
	Some Interpositioning Applications
	Example program		
	Compile-time Interpositioning
	Compile-time Interpositioning
	Link-time Interpositioning
	Link-time Interpositioning
	Load/Run-time �Interpositioning
	Load/Run-time Interpositioning
	Load/Run-time Interpositioning
	Interpositioning Recap
	Linking summary

