
PROFILERS Professor Ken Birman
CS4414 Lecture 11

CORNELL CS4414 - FALL 2020. 1

OUR CHALLENGE TODAY

Can we pull these different threads together?
 We care a great deal about performance… but also elegance

(and correctness, security, algorithmic efficiency)
 We are working with big systems that use big libraries
 The theme, throughout, centers on taking control of things: the

hardware, Linux, the C++ compiler, your own code…
Can we visualize how all these elements interplay and use our
vision to identify unexpected bottlenecks?

CORNELL CS4414 - FALL 2020. 2

AN UNDERSTANDING OF CONST, CONSTEXPR AND
TEMPLATES CLARIFIES PERFORMANCE ANALYSIS

Knowing how to visualize a program lets us assess performance:

We need to learn how gprof and other profiling tools work,
but then can use them to diagnose performance problems.

With a clear mental image of how things should work, we can
identify surprising overheads that may lead to insights about
root causes of slow performance.

CORNELL CS4414 - FALL 2020. 3

TOOLS VERSUS VISUAL THINKING

A tool is used to measure something. You learn some number.

The image in your mind shapes the questions you ask – the
measurements you need. If you cannot visualize how something is
working, you won’t be effective at evaluating performance.

But sometimes you have “is it A or B?” questions. Tools can help!

CORNELL CS4414 - FALL 2020. 4

IDEA MAP FOR TODAY

CORNELL CS4414 - FALL 2020. 5

90% - 10% rule

Use performance analysis tools and
methods to confirm your expectations or

to discover surprises

Should we do extensive hand-optimization,
or can we shape the “system” to achieve

our goals through elegant, higher-level methods?

What determines performance?

Visualize the expected behavior
of your program!

Aim for the biggest wins with the
smallest changes to the code

RULES OF THUMB

Start by trying to understand the big picture!

There is always some big thing that dominates performance.
Your job is simply to identify it. And this should be easy
because whatever it is, the program spends a lot of time on it!

CORNELL CS4414 - FALL 2020. 6

RULES OF THUMB

Simple suggestions often work well even if overly vague

Performance analysis is like measuring with your thumb:
more like an art than a science!

CORNELL CS4414 - FALL 2020. 7

TODAY: ARE THERE SIMPLE RULES FOR
PERFORMANCE ANALYSIS?
Suppose you are given a big program written by a team. It has
25,000 lines of really hard to understand code.

Your job: it runs for 10 secs, and your boss thinks this is too slow.

How much speedup is possible? Could you get a 10x or better
speedup? How will you approach this?

CORNELL CS4414 - FALL 2020. 8

IDEA OF A SIMPLE RULE: HOW DO WE GET
CODE TO COMPILE?

Always fix the first

line the compiler complains about!

A single issue can cause dozens or hundreds of error messages,
so each compilation issue you fix might “clear” many more.

CORNELL CS4414 - FALL 2020. 9

IDEA OF A SIMPLE RULE: HOW DO WE DEBUG
OUR CODE?
Fix the very first thing that goes wrong in any execution.

Even if the first issue is “obscure”, fixing it will shed light on any
systematic mistakes you might be making. It will also get rid of
secondary effects.

Unit test all your components, one method a time. Issues with basic
components can confuse you: you might think the bug is in the code
using that method, not in the method itself.

CORNELL CS4414 - FALL 2020. 10

SIMPLE RULE FOR PERFORMANCE ANALYSIS

Speed up the thing the program is doing the most.

Ignore the rest. Why mess with stuff that works?

CORNELL CS4414 - FALL 2020. 11

25,000 LINES OF CODE…

Probably 250,000 machine instructions.

Your computer runs at about 1 billion instructions per second.
So, each CPU can execute 10B instructions in 10s. Our word
count program ran for about 13 seconds of user time.

But is it plausible that every line of the program was really
executed 5.2M times?

CORNELL CS4414 - FALL 2020. 12

TO CONSUME 13 SECONDS OF CPU TIME…

The program must be (1) in some form of loop, or (2) running a
recursive algorithm that has high complexity. [Note: Some
programs might also be (3) waiting for the kernel, a lot]

Unless the entire program is a massive loop, it is far more likely
that just part of the program is responsible.

A great many studies confirm this intuition!
CORNELL CS4414 - FALL 2020. 13

EVERY PROGRAM LOOKS SIMILAR
WHEN VIEWED FROM A MILE UP

Most programs have a lot of non-executing code, and a lot of
code used just when starting up, or just when printing output.

A program generally spends 90 to 99% of its compute time in
just 10% or less of the code, and often much less.

CORNELL CS4414 - FALL 2020. 14

BUT FIRST YOU NEED TO KNOW IF THE
PROGRAM IS SPENDING A LOT OF WAITING
Linux has many tools that can help.

With “top” you can watch when the program is executing. Is it
keeping one or more cores busy?

If a process is fully busy on 8 cores, it shows as 800% loaded

CORNELL CS4414 - FALL 2020. 15

IOSTAT, VMSTAT

If a program runs for a long time but has low CPU utilization, it
must be waiting for the Linux kernel to “do something”.

Iostat monitors I/O activity and can help you understand if your
application is overwhelming the file system.

Vmstat monitors paging. High paging rates will slow you down

CORNELL CS4414 - FALL 2020. 16

EXOTIC TOOLS

Mpstat: “Multi-processor” statistics. Extremely useful for programs
that are multi-threaded. Try “mpstat –P ALL”

Sar: This command is often used to create periodic reports that it
will mail to the system administrator. For more automated uses.

CORNELL CS4414 - FALL 2020. 17

EXOTIC TOOLS

CoreFreq: An Intel tool for collecting information about the cores
on a NUMA machine, including cache stalls, instruction prefetch
stalls, etc. Requires a special setup first, to disable a few Linux
features that might otherwise confuse the output.

Htop: Similar to top, but some people prefer the output format,
and it has a few options top lacks.

CORNELL CS4414 - FALL 2020. 18

EXOTIC TOOLS

Perf: A bit like CoreFreq, but tracks a wide variety of process
behaviors and reports on them. You can ask it to “focus” on a
particular process this way:

perf stat -p 1234 // replace 1234 with the process-id

CORNELL CS4414 - FALL 2020. 19

perf stat -p 2087

YOUR TASK?

First, understand if the process is genuinely busy. If it is, you
need to find that core portion that loops so heavily.

Studies show that it will rarely be more than 10% of the code,
and often might be as little as 1% of the code!

This will reduce your performance-optimization task to a set of
250 to 2,500 lines out of the original 25,000!

CORNELL CS4414 - FALL 2020. 20

GPROF

If you compile your program with the –pg flag, and if it exits
normally (main returns), a profile file will be written.

Then when you execute gprof myprog, grprof prints pages of
output that can narrow the exact spot down in your code that
spends so much time looping!

CORNELL CS4414 - FALL 2020. 21

HOW IT WORKS

There are two aspects
 Linux kernel helps by using timers to build a histogram of where the

PC pointed as the program executes.
 g++ -pg helps by including some additional method-call tracing data

in a dedicated register. This allows it to count how often each method
was called, by whom, and to compute the total time per call.

CORNELL CS4414 - FALL 2020. 22

EXAMPLE OF A GPROF OUTPUT

In this example, Ns_DStringNAAppend is responsible for 17% of
the total runtime

CORNELL CS4414 - FALL 2020. 23

Flat profile:

% cumulative self self total
time seconds seconds calls ms/call ms/call name
17.7 3.72 3.72 13786208 0.00 0.00 Ns_DStringNAppend [8]
6.1 5.00 1.28 107276 0.01 0.03 MakePath [10]
2.9 5.60 0.60 1555972 0.00 0.00 Ns_DStringFree [35]
2.7 6.18 0.58 1555965 0.00 0.00 Ns_DStringInit [36]
2.3 6.67 0.49 1507858 0.00 0.00 ns_realloc [40]

GPROF ALSO TRACKS CALLER INFORMATION

CORNELL CS4414 - FALL 2020. 24

granularity: each sample hit covers 2 byte(s) for 20.00% of 0.05 seconds

index % time self children called name
<spontaneous>

[1] 100.0 0.00 0.05 start [1]
0.00 0.05 1/1 main [2]
0.00 0.00 1/2 on_exit [28]
0.00 0.00 1/1 exit [59]

0.00 0.05 1/1 start [1]

[2] 100.0 0.00 0.05 1 main [2]
0.00 0.05 1/1 report [3]

0.00 0.05 1/1 main [2]

[3] 100.0 0.00 0.05 1 report [3]
0.00 0.03 8/8 timelocal [6]
0.00 0.01 1/1 print [9]

....

ISSUE SPECIFIC TO C++

With C++ templates, the method names can become so long
that gprof may sometimes have formatting issues or even crash!

The heavy use of libraries more or less guarantees that most
time will be shown as being in various libraries. But you want to
understand time spent in the user code that called these libraries,
which is trickier!

CORNELL CS4414 - FALL 2020. 25

EXAMPLE: FAST-WC

Ken and Sagar’s word count programs are nearly impossible to
profile with these tools.

Gprof sometimes even crashes due to the long symbol names!

But just the same, I tried a few different “configurations” and
found a case where it was able to run…

CORNELL CS4414 - FALL 2020. 26

SOME OF THE GPROF OUTPUT FROM FAST_WC

CORNELL CS4414 - FALL 2020. 27

Flat profile:

Each sample counts as 0.01 seconds.
% cumulative self self total

time seconds seconds calls us/call us/call name
55.39 1.03 1.03 wcounter(int)
18.28 1.37 0.34 412 825.44 825.44 std::_Rb_tree<std::__cxx11::basic_string<char, std::char_traits<char>,
std::allocator<char> >, std::pair<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const,
int>, std::_Select1st<std::pair<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const,
int> >, std::less<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >,
std::allocator<std::pair<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const, int> >
>::_M_erase(std::_Rb_tree_node<std::pair<std::__cxx11::basic_string<char, std::char_traits<char>,
std::allocator<char> > const, int> >*)
15.60 1.66 0.29 std::map<std::pair<int, std::__cxx11::basic_string<char,
std::char_traits<char>, std::allocator<char> > >, int, DefineSortOrder, std::allocator<std::pair<std::pair<int,
std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > > const, int> >
>::operator[](std::pair<int, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > > const&)

(CLEANED UP TO BE LEGIBLE)

CORNELL CS4414 - FALL 2020. 28

Flat profile:

Each sample counts as 0.01 seconds.
% cumulative self self total

time seconds seconds calls us/call us/call name
55.39 1.03 1.03 wcounter(int) // Ken’s word count main loop
18.28 1.37 0.34 412 825.44 825.44 _M_erase(…)
15.60 1.66 0.29 operator[]()
6.99 1.79 0.13 M_erase(…)
2.15 1.83 0.04 __tcf_1
1.08 1.85 0.02 __tcf_0
0.54 1.86 0.01 1168849 0.01 0.01 M_get_insert_hint_unique_pos(…)
0.00 1.86 0.00 8 0.00 0.00 _M_get_insert_unique_pos(…)
0.00 1.86 0.00 1 0.00 0.00 _GLOBAL__sub_I_lock
0.00 1.86 0.00 1 0.00 0.00 M_get_insert_unique_pos(…)

... etc

EXAMPLE: FAST-WC

Fast-wc used a std::map, and the core operation was to increment
the count in an element.

We actually see the calls to the indexing operation: “operator[]”,
although gprof doesn’t have a count for how often it was called.
(C++ library wasn’t compiled with –pg!)

It looks like most of the time is spent in “word counter”, which is good

CORNELL CS4414 - FALL 2020. 29

WHAT ABOUT M_ERASE AND _M_ERASE?

These turn out to be methods used inside the std::map class,
which uses a B+ tree data structure

M_Erase was a “wrapper” method that just called _M_Erase

Not called very often yet turned out to be 17% of the runtime
for fast-wc. By building my own home-made tree class I
could probably get rid of that overhead… hmm…

CORNELL CS4414 - FALL 2020. 30

STATEMENT COUNTS

With the –A option, gprof will
print line by line execution
frequency… if it doesn’t crash.

On a C++ program, however,
this feature is unstable and may
not produce any output at all.

CORNELL CS4414 - FALL 2020. 31

ulg updcrc(s, n)
uch *s;
unsigned n;

2 ->{
register ulg c;
static ulg crc = (ulg)0xffffffffL;

2 -> if (s == NULL) {
1 -> c = 0xffffffffL;
1 -> } else {
1 -> c = crc;
1 -> if (n) do {

756 -> c = crc_32_tab[...];
756,1,756 1 -> } while (--n);

}
2 -> crc = c;
2 -> return c ^ 0xffffffffL;
2 ->}

STATEMENT COUNTS

With the –A option, gprof will
print line by line execution
frequency… if it doesn’t crash.

On a C++ program, however,
this feature is unstable and may
not produce any output at all.

CORNELL CS4414 - FALL 2020. 32

ulg updcrc(s, n)
uch *s;
unsigned n;

2 ->{
register ulg c;
static ulg crc = (ulg)0xffffffffL;

2 -> if (s == NULL) {
1 -> c = 0xffffffffL;
1 -> } else {
1 -> c = crc;
1 -> if (n) do {

756 -> c = crc_32_tab[...];
756,1,755 1 -> } while (--n);

}
2 -> crc = c;
2 -> return c ^ 0xffffffffL;
2 ->}

Tells us how many times the
test was evaluated, how

many times it was true, how
many times it was false

THOUGHT QUESTION

int fibonacci(int n) { return n < 2? n: fibonacci(n-1)+fibonacci(n-2); }

This is a pretty inefficient recursion. But as a constexpr, called with a
constexpr argument, C++ could compute it at compile time.

How would gprof output differ for the actual function versus the
constexpr version? What about statement counts?

CORNELL CS4414 - FALL 2020. 33

VALGRIND

A very popular tool because it reveals possible memory leaks
(objects that were allocated but never properly freed). It also
can create a profile of execution time, like gprof.

Use it this way: “valgrind --tool=callgrind ./(Your binary)”

“callgrind_annotate callgrind.out.pid” shows the output collected

CORNELL CS4414 - FALL 2020. 34

GOOGLE PROFILING TOOLS

Google has a new collection of powerful tools called

google-perftools

These seem quite popular, but we haven’t tried them at Cornell.

CORNELL CS4414 - FALL 2020. 35

https://github.com/gperftools/gperftools

OTHER OPTIONS

In a debugger, just pause the program a few times.

If it really spends 90% of its time in some part of the code, that
part of the code will be where it stops!

This can work when all else fails…

CORNELL CS4414 - FALL 2020. 36

OTHER OPTIONS

You can also just insert code to time chunks of your logic:

1) Call the Linux “gettimeofday” method
2) Run the logic you are timing [perhaps: “many times”]
3) Call gettimeofday again, and subtract (1)

Big advantage is that this method won’t cause any slowdown.

CORNELL CS4414 - FALL 2020. 37

WHAT DO YOU DO WITH THIS RAW DATA?

The intellectually interesting task is to match what you observe
against what you would anticipate based on understanding the
program.

So there is always a back-and-forth:
 How did I design this to work?
 How is it actually working, and are there any big surprises?

CORNELL CS4414 - FALL 2020. 38

WITH THESE REPORTS…

You’ll see which methods are consuming most of the time

But also, who is calling those methods. The issue is often a higher
level method that doesn’t use a lot of time “itself” but actually
accounts for almost all the time when you also include its
children.

Gprof is showing you exactly this information!
CORNELL CS4414 - FALL 2020. 39

ONCE YOU’VE NARROWED IT DOWN

At this point, you do need to read the code (even if you didn’t
write it), to understand what the method is trying to do.

Sometimes you’ll quickly realize that this code was poorly
written. For example, it might be looking up the same
information again and again in a list – a simple “memoizer” that
caches some recent results can have a magical impact.

CORNELL CS4414 - FALL 2020. 40

PERHAPS C++ NEEDS SOME HELP…

Recall our discussion about the vectorization features of C++

For those to work, your code needs to have a very clean
structure, loops need to have “fixed” termination bounds, etc.

Often code can be rewritten, just a little, and will suddenly run
much faster (remember to use –O3 when compiling)

CORNELL CS4414 - FALL 2020. 41

THINK OUT OF THE BOX!

The developers of this code probably were using C++
intelligently, but they may never have realized that so much time
would be spent at this one spot.

Once you really understand what this code is doing, you can ask
whether it is doing it in the fastest possible way.

CORNELL CS4414 - FALL 2020. 42

MANY THINGS CAN BE UNEXPECTEDLY
COSTLY IN AN OBJECT-ORIENTED LANGUAGE
Objects might be getting created and freed very frequently.

Constructors might be more costly than you realize (and maybe
more costly than needed)

A developer might be using some sort of standard pattern in a
very inefficient way

CORNELL CS4414 - FALL 2020. 43

MORE BIG PICTURE THINGS TO CONSIDER

Perhaps the larger code structure doesn’t even need to be doing
this expensive thing.

Sometimes people take shortcuts when coding without thinking
much about it, and later those pieces of code get used heavily.

A relatively minor thing the developer didn’t have time to do
could make a huge difference.

CORNELL CS4414 - FALL 2020. 44

THIS IS WHY LOOKING UP AT THE CALL
STACK REALLY MATTERS!
Sure, a mysterious method named Ns_DStringNAppend is
consume a lot of compute time.

The puzzle is that this might be internal to the C++ std libraries.
But when you look up the calls stack a few levels, you see code
from this program that is responsible for those calls.

CORNELL CS4414 - FALL 2020. 45

EXAMPLE OF THE KIND OF
THING WE HAVE IN MIND

In a photo processing application, it could be tempting to treat
each pixel of the image as an object with RGB or HCL values.

Then an operation like “rotate and tilt” could be expressed very
elegantly. But the resulting code will be accessing fields of these
objects frequently…

CORNELL CS4414 - FALL 2020. 46

REMEMBERING THE INTEL ADVICE ON
VECTORIZATION
To vectorize nicely, we need dense arrays for each color. For
example, a 760 x 1024 image could be represented as 3
matrices each for a distinct color in the RGB case.

Then we would have dense arrays with clean array indexing.
Our loops might vectorize extremely well.

CORNELL CS4414 - FALL 2020. 47

GHASTLY CODE EDITING!

This representation (as objects) will be used everywhere in the
photo processing application

Sounds like we would need to rewrite all accesses to the photo
in the image processing application.

… or does it? Any ideas?

CORNELL CS4414 - FALL 2020. 48

… AN IDEA!

What about keeping the existing objects, but changing them into
getter/setter objects that access into these 3 matrices?

Now the existing code will all continue to work! But we also
have this great “raw” representation available

For very costly actions, we could recode against the raw data.

CORNELL CS4414 - FALL 2020. 49

A SECOND, SIMILAR IDEA

We could also construct the dense array data when we need it,
which won’t be incredibly slow if it occurs rarely.

Then we can operate on it to do our expensive image operation.

At the end, we could “copy the results” back into the objects.

CORNELL CS4414 - FALL 2020. 50

HOW TO DECIDE?

Adopt an approach that minimizes your effort.

Aim for the really, really expensive “thing” and optimize at that
level.

Had we dived deep and optimized Ken’s wcounter main loop,
and perhaps figured out what causes M_Erase to be called, his
word-count program could have been even faster!

CORNELL CS4414 - FALL 2020. 51

SUMMARY

In many courses you learn one technique, or one tool, and it is separable
from other techniques or other tools.

In systems programming, our challenge is that we are really programming
“the system” – which has many layers, including the C++ compiler, the STL,
the Linux kernel, and even hardware elements like the network interface or
the storage unit.

A true master of systems programming is able to visualize all these moving
parts, then can use tools like gprof to “zero in” on issues

CORNELL CS4414 - FALL 2020. 52

	Profilers
	Our challenge today
	an understanding of const, constexpr and templates clarifies performance analysis
	Tools versus visual thinking
	Idea Map For Today
	 Rules of thumb
	 Rules of thumb
	Today: are there Simple rules for performance analysis?
	Idea of a simple rule: How do we get code to compile?
	Idea of a simple rule: How do we debug our code?
	Simple rule for performance analysis
	25,000 lines of code…
	To consume 13 seconds of CPU time…
	Every program looks similar�when viewed from a mile up
	But first you need to know if the program is spending a lot of waiting
	Iostat, VMStat
	Exotic tools
	Exotic Tools
	Exotic tools
	Your task?
	gprof
	How it works
	Example of a gprof output
	Gprof also tracks caller information
	Issue specific to C++
	Example: fast-wc
	Some of the gprof output from fast_wc
	(Cleaned up to be legible)
	Example: fast-wc
	What about M_Erase and _M_Erase?
	Statement counts
	Statement counts
	Thought question
	valgrind
	Google Profiling Tools
	Other options
	Other options
	What do you do with this raw data?
	With these reports…
	Once you’ve narrowed it down
	Perhaps C++ needs some help…
	Think out of the box!
	Many things can be unexpectedly costly in an object-oriented language
	More big picture things to consider
	This is why looking Up at the call stack really matters!
	Example of the kind of �thing we have in mind
	Remembering the Intel advice on vectorization
	Ghastly code editing!
	… an idea!
	A second, similar idea
	How to decide?
	Summary

