
CONSTANT EXPRESSIONS IN C++ Professor Ken Birman
CS4414 Lecture 9
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IDEA MAP FOR TODAY
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In Lecture 8 we learned that C++ can 
automatically compile to vector-parallel
instructions.

… But we also saw longs lists of 
“suggested” coding styles intended to 
make it feasible for C++ to do this!

Even without those long lists of advice, this same issue 
arises when C++ compiles normal code for normal 
machine instructions!  Some styles promote faster code

Today we will look at another example, unrelated
to parallelism: the C++ concepts of “const” and “by
reference”.  Const is notationally hard to get used to
but valuable.  “By reference” is risky to use carelessly,
but important to understand!



CONNECTION TO CONCEPTUAL ABSTRACTION

Lectures 7 and 8 looked at cases in which the C++ compiler can 
carry out some sort of conceptual transformation or optimization 
if we understand the design pattern.

We saw this with control flow, and with SIMD parallelization.

Today we continue this theme by looking at compile-time 
expression evaluation: another powerful conceptual abstraction!
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HOW DO PROGRAMS IN C OR C++ BECOME 
EXECUTABLES?
Languages like Python and Java are highly portable.  They compile 
to byte code… Java does “just in time” compilation to machine code.

This is not the case for C and C++.  Each distinct computer may have 
a different CPU and its own memory layout rules.

Thus, “find” or “cat” or “tr” or “sort” or “uniq” needs to be turned 
into machine-language specific for the particular machine
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COMPILATION

name.c/.cpp, name.h/.hpp: source code
name.s: assembler language
name.o: “object” code:  machine code plus symbol table
name.dll: “dynamically linked library”
a.out: The default name for a compiled executable
core: If enabled, a file created in the current directory (or in 
/var/core) if your program crashes.  Use gdb to find out where and 
why it happened.  Compiler option –g is useful in this context.
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In fact, let’s look at an example:

fibonacci(n) computes the n’th
fibonacci integer

1 2 3 5 8 13 21 ….

In fact, let’s look at an example:

fibonacci(n) computes the n’th
fibonacci integer

1 2 3 5 8 13

CONSIDER THE HUMBLE PROCEDURE CALL…
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int fibonacci(int n)
{

if(n <= 1)
return n;

return fibonacci(n-1)+fibonacci(n-2);
}

21 = 8 + 13



WHERE IS FIBONACCI PROCESSED?

As we will see, in C++ there are several possible answers.

The most obvious case is when actual code will be created.  
Here the compiler itself generates that code.

Later we will see other cases where no code is generated!
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… FIBONACCI IS THE MOST FAMOUS 
EXAMPLE OF RECURSION
When first introduced to recursion, many students are confused 
because 
1. The method is invoking itself, 
2. The variable n is being used multiple times in different ways, 
3. We even call fibonacci twice in the same block!

Over time, you learn to think in terms of “scope” and to view each 
instance as a separate scope of execution.
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… BUT N DOES NEED A MEMORY LOCATION?

Where does the memory for n reside?   … on the stack.  Each time 
fibonacci is called, C++:
 Pushes any registers to the stack, including the return PC
 Pushes arguments (in our case, the current value of n)
 Jumps to fibonacci, which allocates space on the stack for local

variables (in our case there aren’t any), and executes
 When finished, fibonacci pops the PC and returns to the caller
 The caller pops the things it pushed
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FIBONACCI(5)
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int fibonacci(n)
{

if(n <= 1)
return n;

return fibonacci(n-1)+fibonacci(n-2);
}

… 15 calls to fibonacci occur, in total



FIBONACCI(5)
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int fibonacci(3)
{

if(n <= 1)
return n;

return fibonacci(2)+fibonacci(1);
}

… 15 calls to fibonacci occur, in total



WHERE IS TIME BEING SPENT?

How many instructions really relate to computing fibonacci?

We have an if statement: a comparison (call it
compare “a and b”) then branch “if a >= b”.

Two recursive calls, one addition, then return.
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2

1

2 * ? + 1 + 1



THE COST OF THE RECURSIVE CALLS

They each 
 Push registers.  Probably 1 is in use.

 Push arguments.  In our case, n.

 Push the return PC, jump to fibonacci

 After the call, we need to pop the arguments
and also pop the saved registers.

CORNELL CS4414 - FALL 2020. 13

1

1

2

2



2 * ? + 1 + 1

… NOW WE CAN FILL IN THE “?” WITH 6

How many instructions really relate to computing fibonacci?

We have an if statement: a comparison (call it
compare “a and b”) then branch “if a >= b”.

Two recursive calls, one addition, then return.
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2

1

2 * 6 + 1 + 1



HOW MANY INSTRUCTIONS TO PUSH AND 
POP ARGUMENTS?
About 17 instructions per call to fibonacci.  Of these, 1 is the actual 
addition operation, and the others are “housekeeping”

For example: fibonacci(5)=0…1…1…2…3…5 

Our code needs to do the required 5 additions.  However, to 
compute it we will do 15 recursive calls at a cost of about 17 
instructions each: 255 instructions… 51x slower than ideal!
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SOME QUESTIONS WE CAN ASK

When C++ creates space for us to hold n on the stack, why is it 
doing this?

We should have a copy of n if we will make changes, but then 
would want them discarded, or perhaps if the caller might be 
running a concurrent thread that could make changes to n “under 
our feet” (if the caller is spawning concurrent work).

But Fibonacci does not change n!
CORNELL CS4414 - FALL 2020. 16



C++ “CONST” ANNOTATION

In C++ we have a way to express that something will not be 
changed.  

The compiler can then use that knowledge to produce better 
code, in situations where an opportunity arises.
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C++ CONST ANNOTATION

The easiest case:

const int  MAXD = 1000;      // Limit on number of Bignum digits

char  digits[MAXD];             //  digits is an array of 1000 8-bit ints

Here, we are declaring a “compile time constant”. C++ knows that 
MAXD is constant and can use this in various ways.
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AN EXAMPLE

… for example, consider

digits[MAXD-k-1] = c;

This sets the item “k” from the end to 8.  C++ can compute MAXN-1 as a 
constant, and index directly to this item as an offset relative to myvec.

By having c and k in registers, only a single instruction is needed!
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movq %rbx,_digits(999-%rax)



WHY IS THIS SO GREAT?

If C++ had not been able to anticipate that these are constants, 
it would have needed to compute the offset into digits.   

 That would require more instructions.

Here, we are leveraging knowledge of (1) which items are 
constants, and also (2) that C++ puts “frequently accessed” 
variables in registers.
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MORE EXAMPLES USING “CONST”

We can mark an argument to a method with “const”.

This means “this argument will not be modified”.
 C++ won’t allow that argument to be used in any situation where it

might be modified.
 C++ will also leverage this knowledge to generate better code.

CORNELL CS4414 - FALL 2020. 21



MORE EXAMPLES USING “CONST”

We can mark an argument to a method with “const”.

This means “this argument will not be modified”.
 C++ won’t allow that argument to be used in any situation where it

might be modified.
 C++ will also leverage this knowledge to generate better code.
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// constant_values1.cpp
int main(const int argc, const char**argv) {

const int i = 5;
i = 10;   // C3892
i++;       // C2105

}



MORE EXAMPLES USING “CONST”

We can mark an argument to a method with “const”.

This means “this argument will not be modified”.
 C++ won’t allow that argument to be used in any situation where it

might be modified.
 C++ will also leverage this knowledge to generate better code.
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// constant_values3.cpp
int main(const int argc, const char**argv) ) {

char *mybuf = 0, *yourbuf;
char *const aptr = mybuf;  // Initializes aptr…
*aptr = 'a';           // OK
aptr = yourbuf;    // C3892

}



MORE EXAMPLES USING “CONST”

We can mark an argument to a method with “const”.

This means “this argument will not be modified”.
 C++ won’t allow that argument to be used in any situation where it

might be modified.
 C++ will also leverage this knowledge to generate better code.
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// constant_member_function.cpp
class Date
{
public:

Date( int mn, int dy, int yr );
Date(const& Date);            // A “copy constructor”
int getMonth() const;         // A read-only function
void setMonth( int mn );    // A write function; can't be const

private:
int month;

};



ASIDE

The “const” suffix for a read-only method like getMonth can only 
appear inside a method declared as a member of a class. It 
means “read only property” of the object the class defines.

If you used this same notation on a global method, it will be 
rejected with an error message.
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ANOTHER ASIDE

A constant lives in the compiler… not in program memory, unless 
the compiler “needs” to save a copy for some reason.

As a result, you cannot access a constant by reference: when you 
take the address of an object, or pass it using the “&” notation 
for a parameter to a method (like sum(int& x, int& y)), you are 
treating the constant as if it has a location in memory.
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… BUT CONST CAN ALSO MEAN “I DON’T 
CHANGE THIS ARGUMENT”
In this sum function, we are saying “sum will treat a and b as 
constants (it won’t change them).   It accesses them by reference, 
so you cannot pass a constant to it
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… BUT CONST CAN ALSO MEAN “I DON’T 
CHANGE THIS ARGUMENT”
In this sum function, we are saying “sum will treat a and b as 
constants (it won’t change them).   It accesses them by reference, 
so you cannot pass a constant to it

The const at the end says that this method will not change 
member variables in the class that defined it.
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CONSTEXPR

This keyword says that “this expression should be entirely 
constant”.  The expression can even include function calls.

C++ will complain if for some reason it can’t compute the result 
at compile time: a constant expression turns into a “result” during 
the compilation stage.

If successful, it treats the result as a const.
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CONSTEXPR

This annotation says that “this expression should be entirely 
constant”.  The expression can even include function calls.

C++ will complain if for some reason it can’t compute the result 
at compile time: a constant expression turns into a “result” during 
the compilation stage.

If successful, it treats the result as a const.
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constexpr float x = 42.0;
constexpr float y{108};
constexpr float z = exp(5, 3);
constexpr int i; // Error! Not initialized
int j = 0;
constexpr int k = j + 1; //Error! j not a constant expression



FUNCTIONS USED IN CONSTANT EXPRESSIONS

To use a function in as an initializer for a const, or in a constexpr, 
the function itself must be marked as a constexpr.

The compiler will complain if any aspect of the function cannot 
be fully computed at compile time.
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WE CAN COMBINE THESE ANNOTATIONS

Here we declare that exp is a constant expression using a 
recursive method to compute x^n
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constexpr float exp(const float &x, const int &n)
{

if(n == 0)
return 1;

if(n % 2 == 0)
return exp(x * x, n / 2);

return exp(x * x, (n - 1) / 2) * x;
}



WHAT ABOUT FIBONACCI(N)?

If n is a constant, fibonacci(n) can actually be computed as a constant 
expression too.

The C++ constexpr concept focuses on this sort of optimization.  If 
something is marked as a constexpr, C++ computes it at compile time.

In principle, it could compute fibonacci(7)….  In practice, however, it 
might not realize it can pull this off and could give an error.
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BY-REFERENCE ARGUMENTS

A method can also ask for a “reference” to its argument, instead 
of the actual value being pushed on the stack.

This feature only works if C++ can be sure that the caller has an 
actual object (or reference to one, or a constant) to pass in.

But assuming you do, the method ends up with a second name 
for the argument passed in: a form of “alias”
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BY-REFERENCE ARGUMENTS

Notation:

fibonacci(int &n)
{

….
}
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n doesn’t have a memory address of its own.

In fact it is a second name (an alias) for the argument 
passed to fibonacci



N IS “USED” JUST AS IT WAS EARLIER

We can still write things like

if(n <= 1)
return n;

return fibonacci(n-1)+fibonacci(n-2);

But now the compiled code is accessing the memory location the caller 
was using for n.  Our method no longer has any local storage for n.
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WE CAN COMBINE THESE ANNOTATIONS

C++ can compute fibonacci(5) as a constexpr entirely at 
compile time.  It will just turn this into the constant 5.

… but it can only be used with a constant argument.
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constexpr int fibonacci(const int &n)
{

return n <= 1? n: fibonacci(n-1)+fibonacci(n-2);
};



INLINE ANNOTATION

This tells C++ that you want it to expand any calls to the method, 
producing a single “straight line” block of code.  In C++ 17 is it 
considered redundant because the compiler does it automatically.

Thus:
c = sum(a, b);

would expand into
c = a + b;

CORNELL CS4414 - FALL 2020. 38



WHAT IF WE INLINE FIBONACCI?

Suppose we had done it this way:

Now the expression “expands” if C++ is able to do so.
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inline int fibonacci(const int &n)
{

return n <= 1? n: fibonacci(n-1)+fibonacci(n-2);
};



INLINING IS AUTOMATIC… YET THE 
KEYWORD IS STILL COMMONLY USED
In effect, when we write “inline” we often are giving a hint both 
to the compiler (which probably ignores the hint and makes its 
own decision!) and also to other readers of the code.

We are saying “I wrote this code as a method, but in fact I am 
anticipating that this is really a “code pattern” that will be 
expanded for me, then optimized in place”.
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CONSTEXPR OR INLINING WILL SAVE 255 
INSTRUCTIONS!
C++ sometimes works very hard at compile time, but by doing so, it 
can eliminate unneeded work at runtime.

In our example, we completely eliminated any actual runtime code 
for fibonacci… but only for calls with a constant argument.

If a constexpr function is called with a non-constant argument, it will 
simply be evaluated as much as possible at compile time but the 
computation will still need to be be finalized by calling it at runtime.
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A CONCRETE PUZZLE

Consider this 
program:

Why doesn’t
inline cause an
infinite recursion
in the compiler?
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#include <iostream>
using namespace std;

inline int fibonacci(const int &n)
{

return (n<=1)? n: fibonacci(n-1)+fibonacci(n-2);
};

int main(int argc, char**argv)
{

for(int n = 1; n < 10; n++)
{

cout << "fibonacci(" << n << ") is " << fibonacci(n) << endl;
}
return 0;

}



RECURSIVE INLINING?

In principle, if we call this version of fibonacci with a constant, it 
“should” expand it fully, then collapse the expression by realizing 
that constant arithmetic suffices.  

But this centers on the compiler realizing that if it starts with n=1..10, 
then n-1-1…-1 eventually reaches 0, hence the right hand side of 
the return statement becomes dead code!

The compiler limits how much recursion it is willing to do at compile 
time.  If it “gives up” it simply produces a call to normal code.
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WHAT ABOUT THE FOR LOOP?

In fact, C++ can “tell” that the for loop iterates over 10 
constant values: 1, 2, … 10

In principle, it should be able to do a constexpr evaluation for 
each of the values, but it is hard to know whether it will get this 
right.  It may depend on the “optimization level” you pick.

For something that fancy C++ can be a bit unpredictable.
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HOW DO THESE FEATURES “INTERPLAY” 
WITH VECTORIZATION?
To write code that will vectorize nicely, it is very important that 
the compiler can determine:

Sizes of your vectors and matrices
Loop “stride” values: The increment in a for loop
Expressions used to access matrix or vector elements
Values used to “map” from some input x to mapped[x]

For such purposes, constexpr arithmetic can be incredibly useful!
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SOME “ODDITIES” TO KNOW ABOUT

Suppose that MAXN is a const int.  What does 
const int MAXN = 10000;
const int* maxnptr = &MAXN;

mean?  … Is maxnptr…

(1) a normal pointer to a const int, or 

(2) is the pointer maxnptr itself a constant?  
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SOME “ODDITIES” TO KNOW ABOUT

Suppose that MAXN is a const int.  What does 
const int MAXN = 10000;
const int* maxnptr = &MAXN;

mean?  … Is maxnptr…

(1) a normal pointer to a const int, or 

(2) is the pointer maxnptr itself a constant?  
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const int is like a type

so., const int* is like a “pointer to a const int”

Compiler will reject this as illegal (a const int has a value, but no associated memory)



“CONST” STATEMENTS ARE PROMISES 
YOU MUST KEEP
Suppose I do this:

const int MAXN = 10000;    // MAXN is a constant (10000)
int *mptr = (int*)&MAXN;    // MAXN is really a const int
*mptr = 5000;                   // What would this do?

In C++ this code sequence is illegal: it modifies a constant.  
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“CONST” STATEMENTS ARE PROMISES 
YOU MUST KEEP
Suppose I do this:

const int MAXN = 10000;    // MAXN is a constant (10000)
int *mptr = (int*)&MAXN;    // MAXN is really a const int
*mptr = 5000;                   // What would this do?

In C++ this code sequence is illegal: it modifies a constant.  
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The compiler should complain that you are not permitted to take the address of a constant.

The error message will probably say that &MAXN is not a legal “rval”



CONCEPT: STATIC ANALYSIS

Modern computing environments often include tools that do some 
form of analysis of programs or other objects before the 
execution actually occurs.

For the C++ compiler, constexpr and inline illustrate forms of 
static analysis that benefit the compilation stage.
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HOW STATIC ANALYSIS IS DONE

Focusing on the C++ compiler, it first scans your program and 
forms a parsed code representation based on applying the 
syntax rules.

Next, it can study this graph structure to learn things.

What sorts of things can static analysis discover?
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STATIC ANALYSIS OPPORTUNITIES

We saw constants, arguments by reference and inlining

Static analysis might also discover loop bounds, “dead” code 
(an if statement that is never true, or always true), variables that 
do or do not need space allocated, etc.

Static analysis is also at the core of type checking.
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CONSIDER THE “AUTO” DECLARATION
In C++ we often ask the compiler to figure out types:

Here we created a map from string “names” to Bignum objects, then 
iterate through the map (item will be a sequence of std::pair objects)
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std::map<std::string, Bignum> the_map;
…
for(auto item: the_map) {

cout << “The next item is “ << item.to_string() << endl;
do_something(item);

}



CONSIDER THE “AUTO” DECLARATION
In C++ we often ask the compiler to figure out types:

Here we created a map from string “names” to Bignum objects, then 
iterate through the map (item will be a sequence of std::pair objects)
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std::map<std::string, Bignum> the_map;
…
for(auto item: the_map) {

cout << “The next item is “ << item.to_string() << endl;
do_something(item);

}

auto

auto requires a form of constexpr computation



EXAMPLE OF AN AUTO-DISCOVERED TYPE

When creating my “Bignum” solution, I once ran into this:


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std::pair<typename std::_Rb_tree<_Key, std::pair<const _Key, _Tp>, std::_Select1st<std::pair<const _Key, _Tp> >, 
_Compare, typename __gnu_cxx::__alloc_traits<_Allocator>::rebind<std::pair<const _Key, _Tp> >::other>::iterator, 
bool> std::map<_Key, _Tp, _Compare, _Alloc>::insert(const value_type&) [with _Key = 
std::__cxx11::basic_string<char>; _Tp = Bignum; _Compare = std::less<std::__cxx11::basic_string<char> >; _Alloc = 
std::allocator<std::pair<const std::__cxx11::basic_string<char>, Bignum> >; typename std::_Rb_tree<_Key, 
std::pair<const _Key, _Tp>, std::_Select1st<std::pair<const _Key, _Tp> >, _Compare, typename
__gnu_cxx::__alloc_traits<_Allocator>::rebind<std::pair<const _Key, _Tp> >::other>::iterator = 
std::_Rb_tree_iterator<std::pair<const std::__cxx11::basic_string<char>, Bignum> >; std::map<_Key, _Tp, _Compare, 
_Alloc>::value_type = std::pair<const std::__cxx11::basic_string<char>, Bignum>]



WHAT IN THE WORLD WAS THAT???

The first thing to know is that C++ often generates its own variables.  
To avoid name conflicts, it puts underscore characters (_) at the front.  

The second thing to know is that a std::map has a “comparison” function 
and an iterator, which (in my case) were defaults.

And so… this was the complete type for std::map<std::string,Bignum>.  
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IN FACT, C++ WOULDN’T BE USEFUL 
WITHOUT TYPE INFERENCE!
Const and constexpr are “natural fits” for C++ because the 
compiler is already doing so much automatic inference.

These annotations simply advise the compiler to do what it 
wanted to do in any case!

… just a glimpse of the true complexity of modern languages
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WE SAW CONSTANT EXPRESSION MATH IN 
LECTURE 8, TOO!
C++ depends upon it to recognize parallelizable logic.

In fact, even code rearrangement can be understood as a form 
of constant expression evaluation: the code is like an expression, 
and all the variant forms of it are “equivalent” representations

This conceptual insight is key to modern compilation…
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BUT BEWARE: NOT EVERY STATIC ANALYSIS 
PROBLEM CAN BE SOLVED!
We already saw this with constexpr and inlining: recursion can 
exceed the limitations of the compiler.

In fact, static analysis can even run into “unsolvable” problems!
 Type inference (auto) is potentially undecidable.  Even the decidable 

versions have high complexity.  Auto normally is successful.
 But experts can construct cases in which C++ may not be sure

what the type of a variable is… and will give an error
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SUMMARY FROM TODAY

C++ has advanced features that permit compile-time code analysis, 
compile-time type inference, and compile-time expression evaluation.  This 
even includes recursive functions!

When we use const / constexpr, we “control” the compiler, which lets us 
ensure that the optimized code will use specialized instructions or achieve 
other kinds of efficiencies.

We code in an elegant, high-level way yet can control the compilation 
process down to ensuring that C++ will make the choices we want.
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