
ABNORMAL CONTROL FLOW
ABSTRACTIONS

Professor Ken Birman
CS4414 Lecture 7

CORNELL CS4414 - FALL 2020. 1

IDEA MAP FOR TODAY

CORNELL CS4414 - FALL 2020. 2

In many situations, we
have a normal control flow
but must also deal with
abnormal events.

The hardware has this
issue: an I/O event might
finish more or less at any
instant. Interrupts are like
procedure calls that occur
“when needed”.

Linux offers programmable signal handling
mechanisms that mimic interrupts.

C++ offers a similar concept via its throw
statement, and the try/catch control structure.

All forms of exceptions can disrupt computation,
making it very hard to write a “safe” handler!

Can Dijkstra’s concept of
creating abstractions offer
a unified way to deal with
abnormal control flow?

PRINTERS APPARENTLY USED TO CATCH FIRE
FAIRLY OFTEN!

CORNELL CS4414 - FALL 2020. 3

HIGHLY EXCEPTIONAL CONTROL FLOW

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/char/lp.c?h=v5.0-rc3
CORNELL CS4414 - FALL 2020. 4

TODAY

Exceptional Control Flow

Linux signals

Programming language-level exceptions

C++ features for handling exceptions

CORNELL CS4414 - FALL 2020. 5

CONTROL FLOW

<startup>
inst1
inst2
inst3
…
instn
<shutdown>

Processors do only one thing:
 From startup to shutdown, a CPU simply reads and executes

(interprets) a sequence of instructions, one at a time
 This sequence is the CPU’s control flow (or flow of control)

Physical control flow

Time

CORNELL CS4414 - FALL 2020. 6

ALTERING THE CONTROL FLOW
Up to now: two mechanisms for changing control flow:
 Jumps and branches… Call and return
 In effect, we change control flow to react to changes in program state

Insufficient: We also need to react to changes in system state
 Data arrives from a disk or a network adapter
 Instruction divides by zero
 User hits Ctrl-C at the keyboard… Timer expires…

CORNELL CS4414 - FALL 2020. 7

EXCEPTIONS: SEVERAL “FLAVORS” BUT
MANY COMMONALITIES
All exceptions “seize control,” generally by forcing the immediate execution
of a handler procedure, no matter what your process was doing.

When a hardware device wants to signal that something needs attention, or
has gone wrong, we say that the device triggers an interrupt. Linux
generalizes this and views all forms of exceptions as being like interrupts.

Once this occurs, we can “handle” the exception in ways that might hide it, or
we may need to stop some task entirely (like with ^C).

CORNELL CS4414 - FALL 2020. 8

BIGGEST CONCERN

An exception can occur in the middle of some sort of expression
evaluation, or data structure update.

For example, if your code manages a linked list, the exception
could occur in the middle of adding a node!

So… the handler cannot assume that data structures are intact!

CORNELL CS4414 - FALL 2020. 9

HOW WE HANDLE THIS

We think in terms of “recoverable” exceptions and “non-
recoverable” ones.

A recoverable exception occurs if the kernel or the program can
handle the exception, then resume normal execution.

A non-recoverable exception terminates the task (or perhaps just
part of some task).

CORNELL CS4414 - FALL 2020. 10

LET’S LOOK FIRST AT MECHANISMS, BUT THEN WE
WILL SEE AN ABSTRACTION EMERGE

A mechanistic perspective looks at how each class of event
arises. Each form of abnormal control flow has a concrete cause

Because the hardware features are diverse, we could end up
with a diverse set of language features to deal with them.

In practice, there is a surprisingly degree of uniformity
representing one abstraction that is applies in various ways

CORNELL CS4414 - FALL 2020. 11

THIS ILLUSTRATES CONCEPTUAL ABSTRACTION

Rather than abstracting storage, the way a file system abstracts
the storage blocks on a device, control flow abstractions have a
conceptual flavor.

They illustrate a reused design pattern and a way of thinking
about abnormal control flow. This concept is universal, yet the
embodiment varies.

CORNELL CS4414 - FALL 2020. 12

THIS DESIGN PATTERN IS A LINUX FEATURE
An exception often causes a transfer of control to the OS kernel
in response to some event (i.e., change in processor state)
 Examples: Divide by 0, arithmetic overflow, page fault, I/O request

completes, typing Ctrl-C

CORNELL CS4414 - FALL 2020. 13

User code Kernel code

Exception
Exception processing
by exception handler

• Return to I_current
• Return to I_next
• Abort

Event I_current
I_next

0
1
2...

n-1

EXCEPTION TABLES

Each type of event has a
unique exception number k

k = index into exception table
(a.k.a. interrupt vector)

Handler k is called each time
exception k occurs

CORNELL CS4414 - FALL 2020. 14

Exception
Table

Code for
exception handler 0

Code for
exception handler 1

Code for
exception handler 2

Code for
exception handler n-1

...

Exception
numbers

EXCEPTION TABLES

The kernel has one for interrupts.

Each process has one for signals.

The entries are simply the addresses of the handler methods. A
special exception handler turns the exception into a kind of
procedure call, at which the handler runs like normal code.

CORNELL CS4414 - FALL 2020. 15

(PARTIAL) TAXONOMY

CORNELL CS4414 - FALL 2020. 16

Asynchronous Synchronous

Interrupts Traps Faults Aborts

ECF

ASYNCHRONOUS EXCEPTIONS (INTERRUPTS)
Caused by events external to the processor
 Indicated by setting the processor’s interrupt pin
 Handler returns to the instruction that was about to execute

Examples:
 Timer interrupt
 Every few ms, an external timer chip triggers an interrupt.
 Used by the kernel to take back control from user programs

 I/O interrupt from external device
 Typing a character or hitting Ctrl-C at the keyboard
 Arrival of a packet from a network, or data from a disk

CORNELL CS4414 - FALL 2020. 17

SYNCHRONOUS EXCEPTIONS

Caused by events that occur as a result of executing an instruction:
 Traps
 Intentional, set program up to “trip the trap” and do something
 Examples: system calls, gdb breakpoints. Control resumes at “next” instruction

 Faults
 Unintentional but possibly recoverable
 Examples: page faults (recoverable), protection faults (unrecoverable), floating point exceptions
 Either re-executes faulting (“current”) instruction or aborts

 Aborts
 Unintentional and unrecoverable… Aborts current program
 Examples: illegal instruction, parity error, machine check

CORNELL CS4414 - FALL 2020. 18

SYSTEM CALLS

CORNELL CS4414 - FALL 2020. 19

Number Name Description

0 read Read file

1 write Write file

2 open Open file

3 close Close file

4 stat Get info about file

57 fork Create process

59 execve Execute a program

60 _exit Terminate process

62 kill Send signal to process

 Each Linux system call has a unique ID number
 Examples:

SYSTEM CALL EXAMPLE: OPENING FILE
User calls: open(filename, options)

Calls __open function, which invokes system call instruction syscall

00000000000e5d70 <__open>:
...
e5d79: b8 02 00 00 00 mov $0x2,%eax # open is syscall #2
e5d7e: 0f 05 syscall # Return value in %rax
e5d80: 48 3d 01 f0 ff ff cmp $0xfffffffffffff001,%rax
...
e5dfa: c3 retq

User code Kernel code

Exception

Open file
Returns

syscall
cmp

 %rax contains syscall number
 Other arguments in %rdi,

%rsi, %rdx, %r10, %r8, %r9
 Return value in %rax
 Negative value is an error

corresponding to negative
errno

SYSTEM CALL EXAMPLE: OPENING FILE
User calls: open(filename, options)

Calls __open function, which invokes system call instruction syscall

00000000000e5d70 <__open>:
...
e5d79: b8 02 00 00 00 mov $0x2,%eax # open is syscall #2
e5d7e: 0f 05 syscall # Return value in %rax
e5d80: 48 3d 01 f0 ff ff cmp $0xfffffffffffff001,%rax
...
e5dfa: c3 retq

User code Kernel code

Exception

Open file
Returns

syscall
cmp

 %rax contains syscall number
 Other arguments in %rdi,

%rsi, %rdx, %r10, %r8, %r9
 Return value in %rax
 Negative value is an error

corresponding to negative
errno

Almost like a function call
• Transfer of control
• On return, executes next instruction
• Passes arguments using calling convention
• Gets result in %rax

One Important exception!
• Executed by Kernel
• Different set of privileges
• And other differences:

• e.g., “address” of “function” is in %rax
• Uses errno
• Etc.

FAULT EXAMPLE: PAGE FAULT

User writes to memory location
That portion (page) of user’s memory is
currently paged out (on disk)

int a[1000];
main ()
{

a[500] = 13;
}

80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10

User code Kernel code

Exception: page fault
Copy page from
disk to memoryReturn and

reexecute movl

movl

FAULT EXAMPLE: INVALID MEMORY REFERENCE

CORNELL CS4414 - FALL 2020. 23

User code Kernel code

Exception: page fault

Detect invalid address
movl

Signal process

int a[1000];
main ()
{

a[5000] = 13;
}

80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10

SOME FLAVORS OF SEGMENT FAULTS

Trying to read or write into memory that isn’t part of your
address space.

Trying to modify a write-protected data or code segment.

Trying to jump into (execute) a data segment (this is actually
possible, but you have to do something special).

CORNELL CS4414 - FALL 2020. 24

YET EXCEPTIONS ALSO ALLOW US TO
EMULATE “INFINITE NUMBER OF CORES”
Basic idea: if we have more threads than cores, we can use timer
exceptions to switch from thread to thread (or process to process)

This is called a “context switch” and involves saving the state of
the interrupted thread: the contents of the registers.

Then we can load the state of the thread we wish to switch to.

CORNELL CS4414 - FALL 2020. 25

CONTEXT SWITCHES BETWEEN PROCESSES

For the hardware, a process is simply a set of threads plus a
memory map that tells which memory pages belong to the
process, and what protection rules to apply.

As part of the context switch, the kernel simply tells the
hardware which “page table” to use for this process.

CORNELL CS4414 - FALL 2020. 26

TODAY

Exceptional Control Flow

Linux signals

Programming language-level exceptions

C++ features for handling exceptions

CORNELL CS4414 - FALL 2020. 27

LINUX SIGNALS

Linux uses a variety of signals to “tell” an active process about exceptions
relevant to it. The approach mimics what the hardware does for interrupts.

The signal must be caught or ignored. Some signals are ignored by default.
Others must be caught and will terminate the process if not.

To catch a signal, a process (or some library it uses) must register a “signal
handler” procedure. Linux will pause normal execution and call the handler.
When the handler returns, the interrupted logic resumes.

CORNELL CS4414 - FALL 2020. 28

LIST OF LINUX SIGNALS

SIGABRT Abort signal from abort(3)
SIGALRM Timer signal from alarm(2)
SIGBUS Bus error (bad memory access)
SIGCHLD Child stopped or terminated
SIGCONT Continue if stopped
SIGEMT Emulator trap
SIGFPE Floating-point exception
SIGHUP User logged out or controlling process
terminated
SIGILL Illegal Instruction
SIGINFO A synonym for SIGPWR
SIGINT Interrupt from keyboard
SIGIO I/O now possible (4.2BSD)
SIGIOT IOT trap. A synonym for SIGABRT
SIGKILL Kill signal (cannot be caught or ignored)
SIGLOST File lock lost (unused)
SIGPIPE Broken pipe: write to pipe with no readers
SIGPOLL Pollable event (Sys V); synonym for SIGIO

SIGPROF Profiling timer expired
SIGPWR Power failure (System V)
SIGQUIT Quit from keyboard
SIGSEGV Invalid memory reference
SIGSTOP Stop process
SIGTSTP Stop typed at terminal
SIGSYS Bad system call (SVr4)
SIGTERM Termination signal
SIGTRAP Trace/breakpoint trap
SIGTTIN Terminal input for background process
SIGTTOU Terminal output for background process
SIGURG Urgent condition on socket (4.2BSD)
SIGUSR1 User-defined signal 1
SIGUSR2 User-defined signal 2
SIGVTALRM Virtual alarm clock (4.2BSD)
SIGXCPU CPU time limit exceeded (4.2BSD)
SIGXFSZ File size limit exceeded (4.2BSD)
SIGWINCH Window resize signal (4.3BSD, Sun)

CORNELL CS4414 - FALL 2020. 29

GDB – LINUX DEBUGGER

Allows you to understand where an exception occurred.

You can set breakpoints, examine variables, see the call stack

You can even watch individual variables

Uses exception handlers for all of this!

CORNELL CS4414 - FALL 2020. 30

PAUSE FOR A DEMO: LETS SEE WHAT HAPPENS
IF A PROGRAM TRIES TO ACCESS MEMORY

INAPPROPRIATELY, AND HOW GDB HELPS US
TRACK SUCH AN ISSUE DOWN.

CORNELL CS4414 - FALL 2020. 31

Running
gdb <program> [core dump]

Start GDB (with optional core dump).
gdb --args <program> <args…>

Start GDB and pass arguments
gdb --pid <pid>

Start GDB and attach to process.
set args <args...>

Set arguments to pass to program to
be debugged.

run
Run the program to be debugged.

kill
Kill the running program.

© 2007 Marc Haisenko <marc@darkdust.net>

Breakpoints
break <where>

Set a new breakpoint.
delete <breakpoint#>

Remove a breakpoint.
clear

Delete all breakpoints.
enable <breakpoint#>

Enable a disabled breakpoint.
disable <breakpoint#>

Disable a breakpoint.

Watchpoints
watch <where>

Set a new watchpoint.
delete/enable/disable <watchpoint#>

Like breakpoints.

<where>
function_name

Break/watch the named function.
line_number

Break/watch the line number in the cur-
rent source file.

file:line_number
Break/watch the line number in the
named source file.

Conditions
break/watch <where> if <condition>

Break/watch at the given location if the
condition is met.
Conditions may be almost any C ex-
pression that evaluate to true or false.

condition <breakpoint#> <condition>
Set/change the condition of an existing
break- or watchpoint.

Examining the stack
backtrace
where

Show call stack.

backtrace full
where full

Show call stack, also print the local va-
riables in each frame.

frame <frame#>
Select the stack frame to operate on.

Stepping
step

Go to next instruction (source line), di-
ving into function.

next
Go to next instruction (source line) but
donʻt dive into functions.

finish
Continue until the current function re-
turns.

continue
Continue normal execution.

Variables and memory
print/format <what>

Print content of variable/memory locati-
on/register.

display/format <what>
Like „print“, but print the information
after each stepping instruction.

undisplay <display#>
Remove the „display“ with the given
number.

enable display <display#>
disable display <display#>

En- or disable the „display“ with the gi-
ven number.

x/nfu <address>
Print memory.
n: How many units to print (default 1).
f: Format character (like „print“).
u: Unit.

Unit is one of:
b: Byte,
h: Half-word (two bytes)
w: Word (four bytes)
g: Giant word (eight bytes)).

GDB cheatsheet - page 1

mailto:marc@darkdust.net

© 2007 Marc Haisenko <marc@darkdust.net>

Format
a
c
d
f
o
s
t
u
x

Pointer.
Read as integer, print as character.
Integer, signed decimal.
Floating point number.
Integer, print as octal.
Try to treat as C string.
Integer, print as binary (t = „two“).
Integer, unsigned decimal.
Integer, print as hexadecimal.

<what>
expression

Almost any C expression, including
function calls (must be prefixed with a
cast to tell GDB the return value type).

file_name::variable_name
Content of the variable defined in the
named file (static variables).

function::variable_name
Content of the variable defined in the
named function (if on the stack).

{type}address
Content at address, interpreted as
being of the C type type.

$register
Content of named register. Interesting
registers are $esp (stack pointer), $ebp
(frame pointer) and $eip (instruction
pointer).

Threads
thread <thread#>

Chose thread to operate on.

Manipulating the program
set var <variable_name>=<value>

Change the content of a variable to the
given value.

return <expression>
Force the current function to return im-
mediately, passing the given value.

Sources
directory <directory>

Add directory to the list of directories
that is searched for sources.

list
list <filename>:<function>
list <filename>:<line_number>
list <first>,<last>

Shows the current or given source con-
text. The filename may be omitted. If
last is omitted the context starting at
start is printed instead of centered a-
round it.

set listsize <count>
Set how many lines to show in „list“.

Signals
handle <signal> <options>

Set how to handle signles. Options are:

(no)print: (Donʻt) print a message when
signals occurs.

(no)stop: (Donʻt) stop the program
when signals occurs.
(no)pass: (Donʻt) pass the signal to the
program.

Informations
disassemble
disassemble <where>

Disassemble the current function or
given location.

info args
Print the arguments to the function of
the current stack frame.

info breakpoints
Print informations about the break- and
watchpoints.

info display
Print informations about the „displays“.

info locals
Print the local variables in the currently
selected stack frame.

info sharedlibrary
List loaded shared libraries.

info signals
List all signals and how they are cur-
rently handled.

info threads
List all threads.

show directories
Print all directories in which GDB sear-
ches for source files.

show listsize
Print how many are shown in the „list“
command.

whatis variable_name
Print type of named variable.

GDB cheatsheet - page 2

mailto:marc@darkdust.net

TODAY

Exceptional Control Flow

Linux signals

Programming language-level exceptions

C++ features for handling exceptions

CORNELL CS4414 - FALL 2020. 34

EXCEPTIONS AT THE LANGUAGE LEVEL

Many programming languages have features to help you manage exceptions.

For Linux signals, this is done purely through library procedures that register that register the
desired handler method.

But for program exceptions, a program might halt, or there may be a way to manage the
exception and resume execution.

One big difference: Linux can restart a program at the exact instruction and in the exact state
it was in prior to an interrupt or signal. But a programming language generally can’t resume
the same instruction after an event like a zero divide, so we need a way to transfer control to
“alternative logic”

CORNELL CS4414 - FALL 2020. 35

UNHANDLED SEGMENTATION FAULTS

Our program dereferenced a null pointer, causing a segmentation
fault. gdb showed us the line and variable responsible for the crash.

Notice the contrast with the cases where Linux was able to handle the
fault: page faults and stack faults… in those, the program hadn’t done
anything wrong... The instruction that caused the fault can be retried
(and will succeed) once the new page is mapped in.

With a segmentation fault, there is no way to “repair” the issue.

CORNELL CS4414 - FALL 2020. 36

WHAT CAN WE DO?

Segmentation faults terminate the process.

But you could “imagine” catching them and just terminating some
thread that triggered the fault.

Other kinds of exceptions might be user-designed ones intended
to reflect program logic, like “divide by 0” in Bignum

CORNELL CS4414 - FALL 2020. 37

TODAY

Exceptional Control Flow

Linux signals

Programming language-level exceptions

C++ features for handling exceptions

CORNELL CS4414 - FALL 2020. 38

WHAT CAN WE DO IF A FAULT MIGHT OCCUR,
BUT CAN BE HANDLED?
Most languages, including C++, offer a way to attempt some
action, but then “catch” exceptions that might occur.

As part of these mechanisms the application is given a way to
“throw” an exception if the logic detects a problem.

CORNELL CS4414 - FALL 2020. 39

C++ CONSTRUCT

try
{

do_something…
}
catch (exception-type) // Something went wrong!
{

handler for exception // “Fix” the issue (or report it)
}

CORNELL CS4414 - FALL 2020. 40

C++ CONSTRUCT

try
{

salaries[employee] *= 1.05;// Give a raise…
}
catch (EmployeeUnknown) // “Employee unknown”
{

handler for exception // Print an error msg
}

CORNELL CS4414 - FALL 2020. 41

“DO_SOMETHING” WON’T BE RETRIED

When Linux handled a page fault, it restarted the program on
the same instruction and in the same state as it had at the fault.

When C++ catches this “not found” error and prints the error
message, we just continue with the next line of code.

CORNELL CS4414 - FALL 2020. 42

A COMMON ISSUE THIS CAN RAISE

Suppose that your program was working with a resource such as
an open file, or was holding a lock (we’ll discuss locks soon…)

The try/catch can jump to a caller, exiting from one or more
code blocks and method calls that were active.

Thus the resource could be left “dangling”, causing memory
leaks or open files or other potential problems.

CORNELL CS4414 - FALL 2020. 43

VISUALIZING THIS ISSUE

CORNELL CS4414 - FALL 2020. 44

void annual_sip(float standard_raise)
{

for(auto emp: emp_list)
{

try
{

give_raise(emp.name, .05);
}
catch(EmployeeNotFound)
{

cout << “Salary DB is missing an employee!” << endl;
}

}

void give_raise(char* name, float raise)
{

FILE *fp = fopen(“Paychecks.dat”);
salaries[name] *= 1.0 + raise;
…. write a record in the paychecks file…
fclose(fp);

}

VISUALIZING THIS ISSUE

CORNELL CS4414 - FALL 2020. 45

void annual_sip(float standard_raise)
{

for(auto emp: emp_list)
{

try
{

give_raise(emp.name, .05);
}
catch(EmployeeNotFound)
{

cout << “Salary DB is missing an employee!” << endl;
}

}

void give_raise(char* name, float raise)
{

FILE *fp = fopen(“Paychecks.dat”);
salaries[name] *= 1.0 + raise;
…. write a record in the paychecks file…
fclose(fp);

}

If this employee is not in
the salaries database,

exception is thrown here.

VISUALIZING THIS ISSUE

CORNELL CS4414 - FALL 2020. 46

void annual_sip(float standard_raise)
{

for(auto emp: emp_list)
{

try
{

give_raise(emp.name, .05);
}
catch(EmployeeNotFound)
{

cout << “Salary DB is missing an employee!” << endl;
}

}

void give_raise(char* name, float raise)
{

FILE *fp = fopen(“Paychecks.dat”);
salaries[name] *= 1.0 + raise;
…. write a record in the paychecks file…
fclose(fp);

}

The exception transfers control to the catch block
in annual_sip. The stack frame of give_raise is
released. But this means that the line that calls

fclose will never execute, so we “leak” open files!

LINKED LIST EXAMPLE

Suppose that your code is adding a node in a linked list. Now
the exception handler tries to access that list data structure.

The list might sometimes seem to be broken because not all the
pointers will have their correct values!

Any data that your program updates could be seen during the
update, rather than just before or after!

CORNELL CS4414 - FALL 2020. 47

NOT EVERY EXCEPTION CAN SAFELY BE
CAUGHT!
Some exceptions are “normal”, like file I/O exceptions, or trying
to access an entry in a key-value map that isn’t (yet) there.

But you often can’t catch and fix other kinds of exceptions, like
the segmentation fault we saw earlier. Damaged data
structures often point to hopelessly corrupted state!

CORNELL CS4414 - FALL 2020. 48

ALSO, IN C++ WHEN WE CATCH AN
EXCEPTION, WE CAN’T “RESUME”
The kernel can catch a page fault, page in the missing memory,
and then restart your code at the exact same spot.

From C++ an exception handler is more like a goto, not like a
method call. We can’t just return to where it happened.

So in this sense, language-level exception handling isn’t like
kernel-level exception handling

CORNELL CS4414 - FALL 2020. 49

EXCEPTIONS RUN A RISK OF BUGS!

In our file opening example, a program could hit the limit on
how many files can be opened.

Memory can leak. The program could crash because of that
partially modified linked list.

Locks could be left in a locked state, causing applications to
freeze up much later, next time something needs that lock.

CORNELL CS4414 - FALL 2020. 50

EXCEPTIONS RUN A RISK OF BUGS!

In our file opening example, a program could hit the limit on
how many files can be opened.

Memory can leak. The program could crash because of that
partially modified linked list.

Locks could be left in a locked state, causing applications to
freeze up much later, next time something needs that lock.

CORNELL CS4414 - FALL 2020. 51

Bugs like these are exceptionally hard to
track down!

You need to anticipate the risk and program
in a way that won’t have these issues.

… THERE IS A RECOMMENDED SOLUTION

One option is to severely limit what an exception handler can do.

For interrupts and signals this, plus a way to briefly disable
exceptions, suffices.

In C++, we can nest exceptions, and sometimes this helps (catch it
locally, close the file, then “rethrow” it). But more often, we
simply have to plan ahead for the risk.

CORNELL CS4414 - FALL 2020. 52

… THERE IS A RECOMMENDED SOLUTION

For example, consider the FILE object. Cleaning these up after catching
an exception is mostly your challenge to think about and address.

One feature C++ does offer, that you can use, is that C++ will run the
destructors for any stack objects that have gone out of scope.

This leads to the idea of using objects that “wrap” sensitive resources
and will clean up in the destructor method.

CORNELL CS4414 - FALL 2020. 53

EXAMPLE OF A WRAPPER

Think about std::shared_ptr<Foo> fptr;

fptr is “wrapped” by a std::shared_ptr object that keeps a
reference count. If we make copies, the counter increments. If
the destructor runs, and the count decrements to 0, fptr is deleted.

This pattern is one we can make use of!

CORNELL CS4414 - FALL 2020. 54

Foo* fptr

Wrapped inner object

std::shared
wrapper

object

COULD WE BUILD A WRAPPER FOR FILE
POINTERS?
One idea is to use std::shared_ptr<FILE>.

When this pointer goes out of scope, the std::shared_ptr<FILE>
object destructor would automatically delete the FILE object.

Unfortunately, the FILE destructor won’t automatically close the
file if it was left open. (This seems like a design mistake!)

CORNELL CS4414 - FALL 2020. 55

COULD WE IMPLEMENT OUR OWN WRAPPER?

Easily! It just requires a few lines of code.

Your wrapper would be just like std::shared_ptr<FILE>, but
tracks whether file is open; if so, the destructor calls fclose()

You can do this for many kinds of resources. C++ has a built-in
one that handles locks.

CORNELL CS4414 - FALL 2020. 56

BACK TO THE ABSTRACTION PERSPECTIVE

Up to now we have been somewhat mechanistic.

Yet it is interesting to realize that the abstraction of abnormal
control flow has a somewhat uniform appearance in all cases.

This type of abstraction doesn’t correspond to a single C++ or
Linux feature, yet the uniformity of the mechanisms helps the
systems programmer reason about them!

CORNELL CS4414 - FALL 2020. 57

WHAT IS THIS ABSTRACTION?

It has steps:
1. Something unusual occurs.
2. This causes an abnormal control flow.
a. Such a flow could harm normal resource management
b. Wrappers allow us to tie the resource management question to

exiting code blocks in a “uniform” manner.

3. Where relevant, restore state and resume so that the
developer won’t be aware that an exception occurred.

CORNELL CS4414 - FALL 2020. 58

SUMMARY

The exception pattern is very widely seen in Linux and C++. Broadly,
exception handling mimics hardware interrupts. But hardware
interrupts and signals can be “inhibited”.

C++ try/catch control flow can’t be inhibited and can easily disrupt
updates and resource management: a potential source of serious bugs.

Per-resource wrappers offer an elegant solution.

CORNELL CS4414 - FALL 2020. 59

	Abnormal control flow abstractions
	Idea Map for today
	Printers apparently Used to Catch Fire fairly often!
	Highly Exceptional Control Flow
	Today
	Control Flow
	Altering the Control Flow
	Exceptions: several “flavors” but many commonalities
	Biggest concern
	How we handle this
	Let’s look first at mechanisms, but then we will see an abstraction emerge
	This illustrates conceptual abstraction
	This design pattern is a Linux feature
	Exception Tables
	Exception tables
	 (Partial) Taxonomy
	Asynchronous Exceptions (Interrupts)
	Synchronous Exceptions
	System Calls
	System Call Example: Opening File
	System Call Example: Opening File
	Fault Example: Page Fault
	Fault Example: Invalid Memory Reference
	Some flavors of segment faults
	Yet Exceptions also allow us to emulate “infinite number of cores”
	context switches between processes
	Today
	Linux signals
	List of Linux signals
	GDB – Linux Debugger
	Pause For a Demo: Lets see what happens if A program tries to access memory inappropriately, and how gdb helps us track such an issue down.
	Slide Number 32
	Slide Number 33
	Today
	Exceptions at the language level
	Unhandled Segmentation faults
	What can we do?
	Today
	What can we do if a fault might occur, but can be handled?
	C++ construct
	C++ construct
	“do_something” won’t be retried
	A common issue this can raise
	Visualizing this issue
	Visualizing this issue
	Visualizing this issue
	Linked List example
	Not every exception can safely be caught!
	Also, in C++ when we catch an exception, we can’t “resume”
	Exceptions run a risk of bugs!
	Exceptions run a risk of bugs!
	… there is a recommended solution
	… there is a recommended solution
	Example of a wrapper
	Could we build a wrapper for FILE pointers?
	Could we implement our own wrapper?
	Back to the abstraction perspective
	What is this abstraction?
	Summary

