
MEMORY MANAGEMENT Professor Ken Birman
CS4414 Lecture 5

CORNELL CS4414 - FALL 2020. 1

IDEA MAP FOR TODAY

CORNELL CS4414 - FALL 2020. 2

Understanding where an
object resides is very
important in modern
systems. In C++, you can’t
write correct code unless
you master this topic

Global objects live in data segments

Inline objects live on the stack

Dynamically created objects live in the heap

Address space for a Linux process:
many kinds of segments

If time permits: How malloc
manages the heap

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

How procedure calls work in C++ and similar languages

 Procedures
 Mechanisms
 Stack Structure
 Calling Conventions
 Passing control
 Passing data
 Managing local data

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Mechanisms in Procedures
 Passing control
 To beginning of procedure code
 Back to return point

 Passing data
 Procedure arguments
 Return value

 Memory management
 Allocate during procedure execution
 Deallocate upon return

 Mechanisms all implemented with
machine instructions

 x86-64 implementation of a procedure
uses only those mechanisms required

P(…) {
•
•
y = Q(x);
print(y)
•

}

int Q(int i)
{
int t = 3*i;
int v[10];
•
•
return v[t];

}

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Mechanisms in Procedures
 Passing control
 To beginning of procedure code
 Back to return point

 Passing data
 Procedure arguments
 Return value

 Memory management
 Allocate during procedure execution
 Deallocate upon return

 Mechanisms all implemented with
machine instructions

 x86-64 implementation of a procedure
uses only those mechanisms required

P(…) {
•
•
y = Q(x);
print(y)
•

}

int Q(int i)
{
int t = 3*i;
int v[10];
•
•
return v[t];

}

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Mechanisms in Procedures
 Passing control
 To beginning of procedure code
 Back to return point

 Passing data
 Procedure arguments
 Return value

 Memory management
 Allocate during procedure execution
 Deallocate upon return

 Mechanisms all implemented with
machine instructions

 x86-64 implementation of a procedure
uses only those mechanisms required

P(…) {
•
•
y = Q(x);
print(y)
•

}

int Q(int i)
{
int t = 3*i;
int v[10];
•
•
return v[t];

}

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Mechanisms in Procedures
 Passing control
 To beginning of procedure code
 Back to return point

 Passing data
 Procedure arguments
 Return value

 Memory management
 Allocate during procedure execution
 Deallocate upon return

 Mechanisms all implemented with
machine instructions

 x86-64 implementation of a procedure
uses only those mechanisms required

P(…) {
•
•
y = Q(x);
print(y)
•

}

int Q(int i)
{
int t = 3*i;
int v[10];
•
•
return v[t];

}

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Today

 Procedures
 Mechanisms
 Stack Structure
 Calling Conventions
 Passing control
 Passing data
 Managing local data

 Illustration of Recursion

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon
Carnegie Mellon

x86-64 Stack

 Region of memory managed
with stack discipline
 Memory viewed as array of bytes.
 Different regions have different

purposes.
 (Like the format of Linux executable

files, a policy decision)

code

stack m
e
m
o
r
y

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon
Carnegie Mellon

x86-64 Stack

 Region of memory
managed with
stack discipline

Stack Pointer: %rsp

Stack “Bottom”
(an empty stack would start here)

code

stack

Stack “Top”
(things you push to the stack go here)

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

x86-64 Stack

 Region of memory managed
with stack discipline

 Grows toward lower addresses

 Register %rsp contains
lowest stack address
 address of “top” element

Stack Pointer: %rsp

Stack
Grows
Down

Increasing
Addresses

Stack “Top”

Stack “Bottom”

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

x86-64 Stack: Push

 pushq Src
 Fetch operand at Src
 Decrement %rsp by 8
 Write operand at address given by %rsp

Stack
Grows
Down

Increasing
Addresses

Stack “Bottom”

Stack Pointer: %rsp

Stack “Top”

val

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

x86-64 Stack: Push

 pushq Src
 Fetch operand at Src
 Decrement %rsp by 8
 Write operand at address given by %rsp

-8

Stack
Grows
Down

Increasing
Addresses

Stack “Bottom”

Stack Pointer: %rsp

Stack “Top”

val

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

 popq Dest
 Read value at address given by %rsp
 Increment %rsp by 8
 Store value at Dest (usually a register)

Stack Pointer: %rsp

Stack
Grows
Down

Increasing
Addresses

Stack “Top”

Carnegie Mellon

x86-64 Stack: Pop

val

Stack “Bottom”

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

 popq Dest
 Read value at address given by %rsp
 Increment %rsp by 8
 Store value at Dest (usually a register)

Stack Pointer: %rsp

Stack
Grows
Down

Increasing
Addresses

Stack “Top”

x86-64 Stack: Pop

+8

val

Stack “Bottom”

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

 popq Dest
 Read value at address given by %rsp
 Increment %rsp by 8
 Store value at Dest (usually a register)

Stack Pointer: %rsp
Stack

Grows
Down

Increasing
Addresses

x86-64 Stack: Pop

val
(The stack pointer is updated but pop

leaves the value itself in memory)

Stack “Bottom”

Stack “Top”

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Thought question

 Why would we care that the value was not somehow “removed” or erased?

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Thought question

 Why would we care that the value was not somehow “removed” or erased?

 … if some other method allocates space on the stack but doesn’t initialize the
variables, their initial value will be taken from whatever was already there.

 In an application that has internal security rules about which methods can access
which data, this could conceivably allow some method to get at data, or a pointer, it
should not have been allowed to see!

 Some Linux hacks have taken advantage of this property.

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Today

 Procedures
 Mechanisms
 Stack Structure
 Calling Conventions
 Passing control
 Passing data
 Managing local data

 Illustration of Recursion

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Code Examples

long mult2(long a, long b)
{

long s = a * b;
return s;

}

void multstore(long x, long y, long *dest)
{

long t = mult2(x, y);
*dest = t;

}

0000000000400550 <mult2>:
400550: mov %rdi,%rax # a
400553: imul %rsi,%rax # a * b
400557: retq # Return

0000000000400540 <multstore>:
400540: push %rbx # Save %rbx
400541: mov %rdx,%rbx # Save dest
400544: callq 400550 <mult2> # mult2(x,y)
400549: mov %rax,(%rbx) # Save at dest
40054c: pop %rbx # Restore %rbx
40054d: retq # Return

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Procedure Control Flow

 Use stack to support procedure call and return
 Procedure call: call label
 Push return address on stack
 Jump to label

 Return address:
 Address of the next instruction right after call
 Example from disassembly

 Procedure return: ret
 Pop address from stack
 Jump to address

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Control Flow Example #1

0000000000400550 <mult2>:
400550: mov %rdi,%rax
•
•
400557: retq

0000000000400540 <multstore>:
•
•
400544: callq 400550 <mult2>
400549: mov %rax,(%rbx)
•
•

0x400544

0x120

•
•
•

%rsp

0x120

0x128

0x130

%rip

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Control Flow Example #2

0000000000400550 <mult2>:
400550: mov %rdi,%rax
•
•
400557: retq

0000000000400540 <multstore>:
•
•
400544: callq 400550 <mult2>
400549: mov %rax,(%rbx)
•
•

0x400550

0x118

0x400549

•
•
•

%rsp

0x120

0x128

0x130

0x118

%rip

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Control Flow Example #3

0000000000400550 <mult2>:
400550: mov %rdi,%rax
•
•
400557: retq

0000000000400540 <multstore>:
•
•
400544: callq 400550 <mult2>
400549: mov %rax,(%rbx)
•
•

0x400557

0x118

0x400549

•
•
•

%rsp

0x120

0x128

0x130

0x118

%rip

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Control Flow Example #4

0000000000400550 <mult2>:
400550: mov %rdi,%rax
•
•
400557: retq

0000000000400540 <multstore>:
•
•
400544: callq 400550 <mult2>
400549: mov %rax,(%rbx)
•
•

0x400549

0x120

•
•
•

%rsp

0x120

0x128

0x130

%rip

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Today

 Procedures
 Mechanisms
 tack Structure
 Calling Conventions
 Passing control
 Passing data
 Managing local data

 Illustrations of Recursion & Pointers

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Procedure Data Flow

Registers
 First 6 arguments

 Return value

Stack

 Only allocate stack space
when needed

%rdi

%rsi

%rdx

%rcx

%r8

%r9

%rax

Arg 7

• • •

Arg 8

Arg n

• • •

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Data Flow
Examples

long mult2
(long a, long b)

{
long s = a * b;
return s;

}

void multstore
(long x, long y, long *dest)
{

long t = mult2(x, y);
*dest = t;

}

0000000000400550 <mult2>:
a in %rdi, b in %rsi
400550: mov %rdi,%rax # a
400553: imul %rsi,%rax # a * b
s in %rax
400557: retq # Return

0000000000400540 <multstore>:
x in %rdi, y in %rsi, dest in %rdx
• • •
400541: mov %rdx,%rbx # Save dest
400544: callq 400550 <mult2> # mult2(x,y)
t in %rax
400549: mov %rax,(%rbx) # Save at dest
• • •

LET’S SEE THIS IN A LARGER CONTEXT

Process: An active instance of some program

Segment: A region of memory that Linux has made available to
some process or processes.

Permissions: Linux can control access to segments: read, write,
execute. And there can be “gaps” too – holes in the address
space with no permission at all.

CORNELL CS4414 - FALL 2020. 29

HOW DO PROGRAMS USE MEMORY?

Your code is compiled to machine instructions

You have global variables, initialized to 0 or perhaps some
other value.

As your process executes it consumes, then releases, stack and
memory resources.

CORNELL CS4414 - FALL 2020. 30

STANDARD SEGMENTS IN LINUX

Any given process can only see memory that Linux maps into its
address space. These segments include
 Code segments that have executable machine instructions
 Data segments that hold various forms of data (globals)
 Mapped files (for speedy access without using open/read)
 Flexible sized “heap” segments managed by malloc/free.

A heap grows at the “top” (towards bigger addresses)
 Stack segments: these grow too, but at the bottom.

CORNELL CS4414 - FALL 2020. 31

WHERE DO NEW OBJECTS LIVE?

As a process executes, it will often need to allocate (or free)
objects

C++ examples:
 char* ptr = (char*)malloc(size); ….. free(ptr); // Old “C” style
 std::map<std::string,count> myMap; // Modern C++
 Semaphore pcounter(5); // If executed “inline”

CORNELL CS4414 - FALL 2020. 32

WHERE DO NEW OBJECTS LIVE?

Three cases:
 Global variables live in a data segment.
 Things declared “inline” consume space on the stack of the

procedure (or code block) where they were declared, and
are allocated when that declaration is “executed”

 Other objects are created in the heap and we work with
pointers to them: instead of “x” being an object, we have
an object xp that holds the address of the object

CORNELL CS4414 - FALL 2020. 33

WHERE DO NEW OBJECTS “LIVE”?

 Stack: objects declared “in line” in some scope. As the thread
leaves that scope, these are automatically deleted

 Others are in dynamically allocated memory as in this example:
auto mymap = new std::map<std::string, int>(constructor args);

 …
delete mymap;

… new automatically uses “malloc.” delete calls “free”

CORNELL CS4414 - FALL 2020. 34

C++ NOTATIONS FOR ACCESSING THINGS

To access something in the std namespace: std::xxx.
 std::string
 std::map<std::string, int>
 If you don’t specify the namespace, C++ looks in the “default” one,

and also in any that were imported via the “using” statement.

To access a field or a method in object x: x.field, x.method(args)
 In C++ we often overload an operator: x[k] might call x.get(k)

If xp is a pointer to object x, x->field, x->method(args)
 Remember how std::map overloaded []? If xp points to a map, write (*xp)[k]

CORNELL CS4414 - FALL 2020. 35

POINTERS VERSUS REFERENCES

When you are looking at an instance of an object, we say that
you have a reference to the object. In C++ you would use the
“dot” notation to access fields in this case.

Example:
std::vector<int> my_vec;

Here, my_vec is a name for a vector instance. my_vec.size() is
the current length of the vector. my_vec[k] is the k’th element.

CORNELL CS4414 - FALL 2020. 36

POINTERS VERSUS REFERENCES

If you have a pointer to the object, you need to indirect through
the pointer, using the → operator.

Example:

auto vp = new std::vector<int>;

Here, vp points to a vector instance. vp→size() is the current
length of the vector. (*vp)[k] is the k’th element.

CORNELL CS4414 - FALL 2020. 37

POINTERS VERSUS REFERENCES

Convert a reference to a pointer using &
auto vp = &my_vec; // vp will point to my_vec

If you convert a pointer to a reference, C++ makes a copy:
auto my_vec = *vp; // creates a copy of the vector

that vp was pointing to.

CORNELL CS4414 - FALL 2020. 38

SHARED_PTR

When working with pointers, people often forget to call malloc.

This is called a memory leak. The heap segment grows and
grows. Eventually a process can run out of space and crash.

Professional C++ developers prefer not to use pointers directly.
We “wrap” them in a shared_ptr template.

CORNELL CS4414 - FALL 2020. 39

SHARED_PTR

When working with pointers, people often forget to call malloc.

This is called a memory leak. The heap segment grows and
grows. Eventually a process can run out of space and crash.

Professional C++ developers prefer not to use pointers directly.
We “wrap” them in a shared_ptr template.

CORNELL CS4414 - FALL 2020. 40https://docs.microsoft.com/en-us/cpp/cpp/how-to-create-and-use-shared-ptr-instances?view=vs-2019

SHARED_PTR

Example:
auto my_ptr = new shared_ptr<foo>(constructor args);

auto ptr_2 = my_ptr; // Auto-increments reference count!

When a shared_ptr goes out of scope, the reference count is
decremented automatically. Delete is called if it reaches 0.

CORNELL CS4414 - FALL 2020. 41

USE A SHARED_PTR LIKE ANY POINTER

Suppose foo has a field “name”.

With a foo* pointer pt, you write pt→name;

With a shared_ptr<foo> you use the identical notation!

CORNELL CS4414 - FALL 2020. 42

MEMORY LEAK

Definition: A program that allocates objects using “new” or
“malloc” but neglects to free them.

The memory is consumed, but never released, so the heap gets
larger and larger.

Best tool for finding leaks: valgrind

CORNELL CS4414 - FALL 2020. 43

MALLOC IS “INEXPENSIVE” BUT NOT FREE

It maintains a big pool of memory and uses various techniques
to try and keep memory compact.
 Fragmentation. Refers to an accumulation of tiny chunks of memory

that can’t be reused because they are too small for most purposes.
 Compaction. Free looks for chances to combine small chunks into

larger ones, which are more likely to be useful in future mallocs.

This is different from garbage collection, which refers to mechanisms that
automatically free an object that no longer has any references to it.

CORNELL CS4414 - FALL 2020. 44

MALLOC/FREE IMPLEMENT DYNAMIC
MEMORY MANAGEMENT FOR C++
One worry: malloc is not infinitely fast and can be a bottleneck.

Many performance-intensive applications maintain freelists:
 Only use malloc if the free list is empty.
 This reduces the pressure on the malloc/free subsystem.

CORNELL CS4414 - FALL 2020. 45

HOW A FREELIST WORKS

When you create your class Foo, you also maintain a list of
pointers to freed Foo objects: std::list<Foo*> freelist;

Suppose fptr points to a Foo (allocated using new):
When finished with fptr, put it on the freelist (and don’t delete it). The

destructor won’t run: fptr is still in use.
 When you need another Foo, check to see if there is a free one on the

list. If so, reuse it instead of creating a new object.

CORNELL CS4414 - FALL 2020. 46

WHICH SEGMENTS HOLD WHICH KINDS OF
MEMORY?
Let’s tour the computer from the hardware “up”.

The NUMA computer has a big memory region that encompasses
all memory on the machine. Any thread with permission can
access any part of this memory (local memory is cheapest).

There may also be memory regions associated with devices such
as computer displays, cameras, etc.

CORNELL CS4414 - FALL 2020. 47

VISUALIZING AN ACTIVE PROCESS

CORNELL CS4414 - FALL 2020. 48

Thread, has an
associated stack

Stack

Code segment

void main(int argc, char* argv) { …. }

Data segment

int my_counter = 0;

DLL segment

C++ Standard Library

Data segment for DLL

Heap segment

Managed by malloc/free

DLL segment

Linux system calls

Data segment for DLL

Mapped File

DIFFERENT THREADS IN ONE PROCESS SHARE
THE SAME ADDRESS SPACE
The memory of a computer is actually linear, although with gaps
used in various ways by the hardware and operating system.

We “think” of the address space as if each thread was next to the
other threads, but if you look at the addresses each has its own
memory segment.

Linux manages a “mapping” from the addresses each process sees to
the actual physical memory. Called a “page table”.

CORNELL CS4414 - FALL 2020. 49

VISUALIZING AN ACTIVE PROCESS

CORNELL CS4414 - FALL 2020. 50

Stack
Shared DLL segment

C++ Standard Library

Shared Data segment for DLL

Heap segment

Managed by malloc/free

Shared DLL segment

Linux system calls

Shared Data segment for DLL
Threads, each has
an associated stack

Stack

Heap segment

Managed by malloc/free

Stack

Shared code segment

void main(int argc, char* argv) { …. }

Shared global data segment

int my_counter = 0;

One heap per RAM pool
Managed by malloc/free

Mapped File

DIFFERENT PROCESSES HAVE DISTINCT
ADDRESS SPACES
Each distinct process has its own address space mapping.

Thus an address can mean different things: my 0x10000 might
contain code for fast-wc, but your 0x10000 could be part of a
data segment.

The hardware knows which process is running, so it can use the
proper page table mapping to know which memory it wants.

CORNELL CS4414 - FALL 2020. 51

MAPPED FILES

We will discuss more in a future lecture.

But Linux has a system call that will map a file into memory so
that the bytes are directly accessible without doing read/write

For sharing between processes (particularly helpful across
programming languages!). Shared file are limited to one writer.

CORNELL CS4414 - FALL 2020. 52

VIRTUAL AND PHYSICAL MEMORY

The hardware allows us to “page out” chunks of memory to a
disk. If the process touches such a page, a “page fault” occurs.

Then the kernel loads the missing page and lets the process
resume execution.

When low on space, this can help… but it also can be costly!

CORNELL CS4414 - FALL 2020. 53

SOME SEGMENTS ARE SHARED BY MULTIPLE
PROCESSES
A mapped file appears in memory, like char* array. You can
access the bytes directly.

Linux picks the “base address” (hence the same file can easily
show up at different places in different processes!)

Changes are automatically rewritten back to the disk. Only one
process can do updates; others are “read only”

CORNELL CS4414 - FALL 2020. 54

SOME SEGMENTS ARE SHARED BY MULTIPLE
PROCESSES
Consider the standard C++ library. Lots of programs use it!

This segment is read-only, so more than one program can share
a single copy. We call it a “dynamically linked library” or DLL

We’ll learn how Linux implements DLLs later in the course.

CORNELL CS4414 - FALL 2020. 55

HOW SEGMENTS GROW

Heaps and stacks are the two kinds of segments that can grow as
needed, or shrink.

A stack has a limited maximum size, but Linux initially makes it small.
As methods call each other and stack space is needed, Linux finds
out and quietly grows the “top” of the stack.

This is a case of a “handled” segmentation fault. If you use up the
limit, then you get a “stack overflow” error, and a crash.

CORNELL CS4414 - FALL 2020. 56

HOW SEGMENTS GROW

The heap has an initial size, but can be expanded by calling the
“sbrk” Linux system call.

Malloc uses this to request extra space. The heap grows at the
bottom, towards larger addresses.

With NUMA, there is one heap per RAM, and memory is
allocated on a RAM close to the thread that called malloc.

CORNELL CS4414 - FALL 2020. 57

WHAT IF YOU ACCESS A SEGMENT ILLEGALLY?

The most notorious way for a process to crash in Linux is a
“segmentation fault”

This means it tried to read from an address that isn’t mapped into its
address space, or from an “unreadable” region (or write, or
execute).

Linux terminates the whole process and might also save a “core” file
for you to study using gdb to understand what crashed.

CORNELL CS4414 - FALL 2020. 58

SUMMARY AND TAKE-AWAYS

Visualize your application as a collection of memory segments.

Some are restricted in various ways: read only, can or cannot
grow (and if so, from which end), executable.

Mapped files are a form of segment that allow distinct processes
to share memory (even if coded in different languages!)

CORNELL CS4414 - FALL 2020. 59

	Memory Management
	Idea map for today
	How procedure calls work in C++ and similar languages
	Mechanisms in Procedures
	Mechanisms in Procedures
	Mechanisms in Procedures
	Mechanisms in Procedures
	Today
	x86-64 Stack
	x86-64 Stack
	x86-64 Stack
	x86-64 Stack: Push
	x86-64 Stack: Push
	x86-64 Stack: Pop
	x86-64 Stack: Pop
	x86-64 Stack: Pop
	Thought question
	Thought question
	Today
	Code Examples
	Procedure Control Flow
	Control Flow Example #1
	Control Flow Example #2
	Control Flow Example #3
	Control Flow Example #4
	Today
	Procedure Data Flow
	Data Flow�Examples
	Let’s see this in a larger context
	How do programs use memory?
	Standard segments in Linux
	Where do new objects live?
	Where do new objects live?
	Where do new objects “live”?
	C++ Notations for accessing things
	Pointers versus references
	Pointers versus references
	Pointers versus references
	Shared_ptr
	Shared_ptr
	Shared_ptr
	Use a shared_ptr like any pointer
	Memory Leak
	Malloc is “inexpensive” but not free
	Malloc/free implement dynamic memory management for C++
	How a freelist works
	Which segments hold which kinds of memory?
	Visualizing an active process
	Different threads in one process share the same address space
	Visualizing an active process
	Different processes have distinct address spaces
	Mapped files
	Virtual and physical memory
	Some segments are shared by multiple processes
	Some segments are shared by multiple processes
	How segments grow
	How segments grow
	What if you access a segment illegally?
	Summary and take-aways	

