
WHY IT IS IMPORTANT (BUT HARD) TO
LEVERAGE MODERN HARDWARE

Professor Ken Birman
CS4414 Lecture 3

CORNELL CS4414 - FALL 2020. 1

IDEA MAP FOR TODAY

CORNELL CS4414 - FALL 2020. 2

Revisit the example
from lecture 1. C++
was faster because it

allowed Ken to
leverage parallelism

using threads.

Parallelism is a powerful tool, but
only gives a speedup if the

program itself is parallelizable.
Sequential bottlenecks limit

achievable speed

There are many “hidden”
opportunities for parallelism that

can benefit even a sequential
program. A good example is

prefetching in a cache

REMINDER FROM LECTURE 1

We had a “word-count shootout” and C++ was much faster!

But what was the C++ program doing that yielded such a
speedup, and why didn’t the standard Linux approach using
existing commands do as well?

And why were Python and Java so much slower?

CORNELL CS4414 - FALL 2020. 3

CORE IDEA

Our task was to compute word frequencies, then output them in a
specific sorted order (descending by count, but alphabetic for ties).

The Linux kernel source code has about 26M lines of code in 74,000
files. It contains 4M distinct words, as defined above.

One option is to treat this as a big file and only use Linux commands.

CORNELL CS4414 - FALL 2020. 4

FINDING THE WORDS

Scan the files, breaking out each word and discarding garbage.
This is called “splitting”.

Build a lookup tree… you’ll insert each “new” word into it with a
count of 1. If the word is found in the tree, just increment counter

At the end you’ll need to output the data sorted in descending
order by frequency of each word: a second sorting task.

CORNELL CS4414 - FALL 2020. 5

HOW DID THE PROGRAMS WORK?

The pure Linux version was easy to write but looks horrible:

CORNELL CS4414 - FALL 2020. 6

find . -type f \(-name '*.c' -o –name ‘*.h’\) -exec cat {} \; |
tr -c '[A-Za-z0-9_ \012]' ' ' | tr -s '[]' '\012' | sort | uniq –c | sort –r –n

HOW DID THE PROGRAMS WORK?

The pure Linux version was easy to write but looks horrible:

It uses what Linux calls a “pipe”. A process prints output to stdout
(normally, the console) but we “redirect” it to become stdin (input)
to another process. This uses 5 pipe operations: |

CORNELL CS4414 - FALL 2020. 7

find . -type f \(-name '*.c' -o –name ‘*.h’\) -exec cat {} \; |
tr -c '[A-Za-z0-9_ \012]' ' ' | tr -s '[]' '\012' | sort | uniq –c | sort –r –n

VISUALIZING THIS APPLICATION

CORNELL CS4414 - FALL 2020. 8

…
mm_segment_t fs = get_fs();
set_fs(KERNEL_DS);

fd = (*syscall_open)(file, flags, mode);
if(fd != -1) {

(*syscall_read)(fd, buf, size);
(*syscall_close)(fd);

}
set_fs(fs);
…

…
fd
syscall_open
file
flags
mode
Fd
1
syscall_read
fd
buf
size
…

…
1
buf
fd
fd
fd
file
flags
mode
size
syscall_open
syscall_read
…

…
1 1
1 buf
3 fd
1 file
1 flags
1 mode
1 size
1 syscall_open
1 syscall_read
…

find . -type f \(-name '*.c' -o –name ‘*.h’\) -exec cat {} \; | tr -c '[A-Za-z0-9_ \012]' ' ‘ | tr -s '[]' '\012’ | sort | uniq –c

WHERE DID WORD COUNTING OCCUR?

We did it in two steps. First, we sorted the file.

Uniq reads the sorted file and (–c flag) counts identical lines.

The final sort was not shown on that slide: “sort –r –n”. This
outputs in descending order by number… which isn’t quite right!

CORNELL CS4414 - FALL 2020. 9

sort –r –n will be in reversed alphabetical order for ties!

LINUX SUMMARY

It involved running a chain of 6 processes linked by pipes.

It was quite slow.

A “hack” to fix the output order: Negate the counts, sort with –n
but not –r, then strip the “-” signs. Ugly, but it would work.

CORNELL CS4414 - FALL 2020. 10

#4: Pure Linux (buggy sort order)
real 2m38.965s
user 2m43.999s
sys 27.084s

WRITING A PROGRAM TO DO THIS

Same idea, but now we need to “take control”

We will need programming tools to do the sorting and counting.

This lets us fix the issue of wanting our output to be sorted by
(count,word) with descending count, but alphabetic word

CORNELL CS4414 - FALL 2020. 11

VISUALIZING THIS APPLICATION

Phase one: Count words in the file using a tree
CORNELL CS4414 - FALL 2020. 12

…
mm_segment_t fs = get_fs();
set_fs(KERNEL_DS);

fd = (*syscall_open)(file, flags, mode);
if(fd != -1) {

(*syscall_read)(fd, buf, size);
(*syscall_close)(fd);

}
set_fs(fs);
…

…
fd
syscall_open
file
flags
mode
fd
1
syscall_read
fd
buf
size
…

Sorted by name

VISUALIZING THIS APPLICATION

CORNELL CS4414 - FALL 2020. 13

(3, fd) (1, buf)

Word Count

fd 3

buf 1

Sorted by name Re-sorted by (count, name)

Output

Phase two: Sort by (count,word), then print output

PYTHON, JAVA AND C++ ALL HAVE
PREBUILT TOOLS FOR EACH STEP

Every one of these steps can just use a standard library.

We end up with very elegant, concise code.

It looks pretty similar for all three languages

CORNELL CS4414 - FALL 2020. 14

LET’S START WITH PYTHON

Python has a built-in splitter, built in vectors, and a vector sort.
It doesn’t leverage hardware parallelism.

One of our course staff
members (Lucy) coded this up…

CORNELL CS4414 - FALL 2020. 15

#3 Lucy’s Python version
real 1m30.857s
user 1m30.276s
sys 0.572s

WHAT ABOUT JAVA VERSUS C++?

Lucy also created a Java version. It compiles in two stages:

 First to Java byte code

 Then to machine code (JIT)

Both compilation steps are highly efficient, but there are some
situations in which Java can only know the type of an object at
runtime. This “runtime polymorphism” slows some libraries down.

CORNELL CS4414 - FALL 2020. 16

#2 Lucy’s Java version (no threads)
real 1m49.373s
user 3m16.950s
sys 8.742s

C++ VERSION?

We created two C++ versions.

Sagar’s was pure and quite fast; you saw it in recitation Monday.

Ken’s dropped into C for file I/O steps and went further than
Sagar in leveraging parallelism. This was fastest of all.

CORNELL CS4414 - FALL 2020. 17

#1: C++ using 24 parallel threads on 24 cores
real 4.645s
user 14.779s
sys 1.983s

C++ DISADVANTAGE

C++ is syntactically different from Java or Python, which can
take a little time to adjust to.

A purist, like Sagar, wouldn’t like Ken’s code: Sagar thinks I
could have gotten the identical speed in pure C++ if I had a
deeper perspective on some of its costs.

This is why Sagar is teaching you C++, rather than me!
CORNELL CS4414 - FALL 2020. 18

QUALITY OF MACHINE CODE

Whether we use Python or Java or C++, at the end of the day
the computer executes machine code. We saw some last week.

Python itself is implemented in Java or C++ and compiled.

But then Python interprets your code. This causes slowdown.

CORNELL CS4414 - FALL 2020. 19

RUNTIME TYPES VERSUS STATIC TYPES

With Java “interesting” things (like tree nodes, or strings) are objects.

Java object types are learned at runtime… this is called “reflection”.
Reflection has a cost, paid at runtime – programs run slower. There
are ways to speed reflection up, but overheads remain an issue.

C++ types are always fully known at compile time (statically). This
lets the compiler use type information to do code optimization.

CORNELL CS4414 - FALL 2020. 20

DATA STRUCTURES AND COMPILATION
QUALITY ARE JUST THE START.

Our server had 28 cores, and each core had a way to pretend to be
two CPUs (hyperthreading), making 56 CPUs.

At first it seemed as if we should use two threads per core. But Linux
needed some cores, and hyperthreading turned out to slow things
down. We got the best numbers with 24 application threads.

After they finish, we could then merge the trees into one big count
tree, combining the sub-results.

CORNELL CS4414 - FALL 2020. 21

IN FACT, WE SHOULD THINK OF THE
APPLICATION AS A SERIES OF TASKS
I’m just using this term to mean “some part of a bigger job”.
Stages would be another common term for this idea.

Overall, we want to scan all 74,000 files. But it might make
sense to subdivide this into a set of tasks.

A single task might do the work of scanning files 1 to 1600

CORNELL CS4414 - FALL 2020. 22

WE WANT TO KEEP ALL 26 CORES BUSY

This form of parallelism forces us to make a choice.

We do this by creating “threads” that each perform a task

CORNELL CS4414 - FALL 2020. 23

THREAD: A BIG TOPIC FOR CS4414

Think about a method that has no return value:

do_something(args….);

A thread runs some method in parallel with its parent.
“You clear the table… I’ll get some chips and salsa”
“You scan files 1…1000” … “I‘ll scan 1001…2000”

CORNELL CS4414 - FALL 2020. 24

VISUALIZING TASK-LEVEL PARALLELISM

CORNELL CS4414 - FALL 2020. 25

File System has 74,000 files in it

Computational
thread 1 processes
about 2000 files

Computational
thread 3 processes
about 2000 files

Computational
thread 2 processes
about 2000 files

Computational
thread 24 processes
about 2000 files

. . .

UNDERSTANDING THE TIMER OUTPUT

In this example, my program will run silently on 8 cores using 16
threads

The “real” (wall clock) time
was 18.469 seconds.

This is how long we waited for it to finish

CORNELL CS4414 - FALL 2020. 26

% time taskset 0xFF ./fast-wc -n16 -s

real 0m18.469s
user 0m43.406s
sys 0m18.203s

UNDERSTANDING THE TIMER OUTPUT

The “user” time measures compute
in my 16 threads. It can be as
much as 16*real time!

CORNELL CS4414 - FALL 2020. 27

% time taskset 0xFF ./fast-wc -n16 -s

real 0m18.469s
user 0m43.406s
sys 0m18.203s

WHY DID I SHOW EACH THREAD WITH ITS
OWN WORD-COUNT TREE?
A tree node needs to live somewhere in physical memory.

If each core builds its own word-count tree for files it scans, that
tree will be entirely in its local memory, and not shared.

Later we will see that sharing objects involves adding locking
and that this brings costs.

CORNELL CS4414 - FALL 2020. 28

DOWN SIDE OF HAVING 56 TREES…

… we end up with 56x more memory in use!

Linux had 4M “unique” words, but with 56 threads, only 27,000 words
are seen by half or more! 3.2M are seen by just 1 or 2 threads.

Suppose an average word-count node requires 64 bytes, and that we
end up with 250,000 nodes per thread. With 56 times will require
16MB x 56 = 896MB. We have enough memory!

CORNELL CS4414 - FALL 2020. 29

DOWNSIDE OF HAVING 56 TREES…

At the end, we have 56 trees containing sub-counts.

Before sorting, we’ll need to merge them.

CORNELL CS4414 - FALL 2020. 30

TREE MERGE IS “EASY”

For each node in tree B, look up that word in tree A, sum the
counts.

C++ is like Java or Python: it has “iterators” for data structures

Just a tiny for loop. But who should run it?

CORNELL CS4414 - FALL 2020. 31

EACH THREAD COMPUTES A PARTIAL WORD
COUNT ON A PORTION OF OUR DATA
Visualization: Thread 1 runs the merge step.

… this is linear: 55 merge operations. Can we do better?

CORNELL CS4414 - FALL 2020. 32

PARALLEL BINARY MERGE
In this picture, we merge from
the bottom to the top

For 56 threads:
Merge [1,2] and [3,4] and … [55,56]
Then [1,3] ……………. [53, 55]

…
Finally: [1, 29]

CORNELL CS4414 - FALL 2020. 33

1 2 3 4

1 3

Starts at the bottom

1 Ends at the very top

Threads 2 and 4 have no
more work and terminate

Thread 3 terminates

PARALLEL BINARY MERGE
In this picture, we merge from
the bottom to the top

For 56 threads:
Merge [1,2] and [3,4] and … [55,56]
Then [1,3] ……………. [53, 55]

…
Finally: [1, 29]

CORNELL CS4414 - FALL 2020. 34

1 2 3 4

1 3

Starts at the bottom

1 Ends at the very top

Threads 2 and 4 have no
more work and terminate

Thread 3 terminatesRule: Each thread t has a variable k and initializes
k = t (its own thread-id in [1…n]). Initialize s to 1.

do {
If (k is even) { thread t terminates. }
else { merge tree t + s into tree t; }
k >>= 1; s <<= 1;

} until (all trees merged into tree 1);

WORTH IMPLEMENTING?

My program offers parallel merge (-p). It helps… a tiny bit.

Issue: my C++ version was really bottlenecked by file I/O. No
matter how fast the threads run, the “sys 18.203s” remains!

C++ tricks can’t reduce runtime below 18.203s without some
way of improving the efficiency of parallel file I/O!

CORNELL CS4414 - FALL 2020. 35

% time taskset 0xFF ./fast-wc -n16 -s

real 0m18.469s
user 0m43.406s
sys 0m18.203s

Time spent in Linux:
File I/O

NEW CHALLENGE: KEEP EVERYTHING
RUNNING SIMULTANEOUSLY!
Finding the bottleneck can be difficult

Even our little merge program has many moving parts
 All those threads, building trees
 But also the work Linux is doing when the threads open files and

read them.

Which is the limiting stage of our complete “system” (fast-wc + Linux)?

CORNELL CS4414 - FALL 2020. 36

TERMINOLOGY

A bottleneck: “the limiting factor” for some task… we don’t really
use the term for a “balanced” task that has no limiting spot.

Compute-bound: The task is bottlenecked (limited) by the speed of
calculations on some kind of in-memory data.

I/O bound: The task is bottlenecked on fetching data from some
kind of storage device, or over the network.

CORNELL CS4414 - FALL 2020. 37

bottleneck

OUR CHALLENGE: NOT JUST DATA STRUCTURES
AND PARALLELISM, BUT BOTTLENECKS

How can we identify the bottlenecks that limit performance?

Can we even measure the degree of parallelism we are
achieving?

 In fact Linux has tools we can use for that.

 We’ll be learning about them!

CORNELL CS4414 - FALL 2020. 38

AMDAHL’S LAW

Gene Amdahl was a leading research on parallelism and
supercomputing in IBM’s HPC division.

He became interested in a basic question. How fast can
computations be performed, with infinite parallelism?

CORNELL CS4414 - FALL 2020. 39

Gene on the family farm in Norway

A DAY TRIP TO NIAGARA FALLS

You and your friends want to do a safe, socially distanced trip
to Niagara falls.

There are six of you. One option
is to rent a mini-bus and sit far
apart, but the mini-bus is slow

CORNELL CS4414 - FALL 2020. 40

A DAY TRIP TO NIAGARA FALLS
Better plan: You rent three convertible sports cars.
With roofs open, each can safely hold two people
Best of all, the cars are “insanely fast”.

But as you head north, the narrow road has a

bottleneck! Until you all pass this slow tractor, the

group will have to wait.

CORNELL CS4414 - FALL 2020. 41
Gene Amdahl’s Tractor in Norway

HOW AMDAHL THOUGHT ABOUT PARALLELISM

In any computation, we have some parts that are highly parallel, such
as scanning our 74,000 different files. Parallelism can speed those up.

But the computation will also have sequential tasks, which could include
sequential logic buried in the operating system or the hardware.

The sequential work will limit the speedup due to parallelism!

CORNELL CS4414 - FALL 2020. 42

HOW AMDAHL EXPRESSED HIS LAW

Suppose that p represents the percentage of the task that can
be parallelized.

Then 1/(1-p) is the maximum
possible speedup

CORNELL CS4414 - FALL 2020. 43

WHAT WOULD BE SEQUENTIAL IN OUR
WORD-FREQUENCY APPLICATION?
Each distinct word-count tree is managed by code that does
“find or insert” and “increase the count” operations.

Those individual operations will be sequential.

CORNELL CS4414 - FALL 2020. 44

WHAT ELSE WOULD BE SEQUENTIAL IN OUR
WORD COUNT APPLICATION?
Once we have our single tree, we have to re-sort it, because we
wanted our printed output to have common words at the top.

Ken and Sagar both needed a second sorted tree for this.

In fact, counting and the final sort both have identical cost!

CORNELL CS4414 - FALL 2020. 45

THE FILE SYSTEM ENDS UP VERY BUSY!

These threads are opening and reading a lot of files

Can it keep up?

If not, our threads won’t be active…

CORNELL CS4414 - FALL 2020. 46

THE FILE SYSTEM ENDS UP VERY BUSY!
This is a famous issue with Linux. For example, Google and
Facebook have Linux servers holding huge collections of web
pages or photos.

They ended up putting images into “strips” to reduce the load
on the file system.

CORNELL CS4414 - FALL 2020. 47

FILE ACCESS COSTS: TWO ASPECTS

Each file has to be opened, which is a moment when Linux
checks that the user has permission to access the file.

Once the file is open, it takes time to read and process data.

When reading, the fast-wc application does many “system calls”

CORNELL CS4414 - FALL 2020. 48

FILE ACCESS COSTS: TWO ASPECTS

With 56 threads doing concurrent reads, the file system is doing
a lot of data fetches from the disk (in “blocks” of 4096 bytes)

If those reads become a bottleneck, our threads will pause and
we lose parallelism.

CORNELL CS4414 - FALL 2020. 49

HOW THE LINUX FILE SYSTEM IS
STRUCTURED
User level programs can’t access
files “directly”. They use Linux.

The implementation is modular
with multiple layers, but notice
the various caches: inodes,
buffers and directories.

CORNELL CS4414 - FALL 2020. 50

Virtual File System

User
space

Kernel
space

CACHE: A CONCEPT USED THROUGHOUT COMPUTING

A pool of memory holding copies of data that “lives” elsewhere.

 The Linux buffer pool is a cache of data read from files. Each
time data is read, Linux keeps a copy (for a while). If it fills up,
Linux will “evict” something else to make room.

 If the application re-reads that same data Linux can
avoid the need to fetch it from the storage device again.

CORNELL CS4414 - FALL 2020. 51

PREFETCHING INTO A CACHE

Linux also watches for sequential read patterns: you read the
first 4096 bytes from a file, then the next 4096, then the next…

Linux will bet that you plan to continue doing this and issues one
or two reads ahead of time, saving the data in cache.

Question: In what way is this a form of “parallelism”?

CORNELL CS4414 - FALL 2020. 52

PREFETCHING INTO A CACHE

Linux also watches for sequential read patterns: you read the
first 4096 bytes from a file, then the next 4096, then the next…

Linux will bet that you plan to continue doing this and issues one
or two reads ahead of time, saving the data in cache.

Question: In what way is this a form of “parallelism”?

CORNELL CS4414 - FALL 2020. 53

Why is prefetching a form of parallelism?

Answer: It lets us overlap the work of finding and reading
the next block of the file (the next 4096 bytes) with the
word-counting logic for the current block.

WHY PREFETCHING AND CACHING HELP

Modern disks (SSD and rotating disks!) have large delays compared
to memory access. 0.1ms or more delay.

Without a high rate of cache hits, we would spend 1 second (or
longer) waiting for disk read requests to complete

With prefetching into the Linux buffer pool, we don’t experience
those 0.1ms delays. Our threads keep running

CORNELL CS4414 - FALL 2020. 54

IN FACT THE CPU ITSELF USES CACHES AND
PREFETCHING, TOO!
A modern CPU has multiple caches:

 L1: the registers. C++ might “cache” data in them

 L2 instruction and data cache: much larger, slightly slower
pair of caches used by the the CPU.

 L3 data cache: shared by the entire NUMA computer (all the
CPU cores).

 Main memory: In modules; largest, but slowest to access

CORNELL CS4414 - FALL 2020. 55

PERFORMANCE DIFFERS ENORMOUSLY!

Accessing L1 cache on the Dell server I used as an example last
time: 2 or 3 clock cycles. The clock runs at 3GHz.
Accessing the L2 cache takes 12 or 13 clock cycles
L3 access jumps to perhaps 40-75 clock cycles. The actual
delay depends on how heavily loaded the memory bus is.
If we need to go to the memory module, there are two cases:
the closest memory module will require125 clock cycles to
access. A remote memory module takes 250 clock cycles.

CORNELL CS4414 - FALL 2020. 56

IDEAL CASE

All of our 28 cores are busy (two threads each). But maybe some
are busy in the kernel, not in my user code.

Each word-count thread is hard at work counting on the current block

At every level of the memory hierarchy, prefetching is anticipating
the next instruction needed, next data needed, next block of file
data needed, and already loading it.

CORNELL CS4414 - FALL 2020. 57

ADD IT ALL UP?

It can be quite hard to document each incremental step that
speeds up a complex parallel program such as word-count.

… There are just too many moving parts

But it is easy to gain factors of 10, and when we consider tasks
with a lot of data parallelism, this can grow to 10,000x

CORNELL CS4414 - FALL 2020. 58

What limits the peak
speed of this motor?

WOULD GOOGLE OR MICROSOFT CARE?

In fact they are kind of “meh” about 10% speedups. But 10,000
would be a different story.

Broadly, these companies don’t get excited about algorithms unless
they are sure your code will run in an asymptotic case

But big “real” speedups can add up to real money and they care a
lot about money. Our 30x example would probably matter.

CORNELL CS4414 - FALL 2020. 59

PERFORMANCE-CRITICAL TASKS

The speedups that count involve scenarios that impact profit.

Examples might include responsiveness of a web page or a
Facebook feed, or how fast an ML algorithm trains.

Companies don’t care much about speed for “rare” things.

CORNELL CS4414 - FALL 2020. 60

OUR AGENDA IN THE NEXT 24 LECTURES

In the recitation, learn C++-17 and Linux.

Meanwhile, in class, learn to think in terms of performance-
aware program design that considers memory hierarchies,
parallelism, prefetching and caching.

By the end of the semester, be able to write amazingly good
code that is correct, secure (we’ll get to that), and performant!

CORNELL CS4414 - FALL 2020. 61

	Why it is important (but hard) to leverage modern hardware
	Idea map for today
	Reminder from Lecture 1
	Core idea
	Finding the words
	How did the programs work?
	How did the programs work?
	Visualizing this application
	Where did word counting occur?
	Linux summary
	Writing a program to do this
	Visualizing this application
	Visualizing this application
	Python, Java and C++ all have prebuilt tools for each step
	Let’s start with Python
	What about Java versus C++?
	C++ Version?
	C++ Disadvantage
	quality of machine code
	Runtime types versus static types
	data structures and compilation quality are just the start.
	In fact, we should think of the application as a series of tasks
	We want to keep all 26 cores busy
	Thread: A big topic for CS4414
	Visualizing task-level Parallelism
	Understanding the timer output
	Understanding the timer output
	Why did I show each thread with its own word-count tree?
	Down side of having 56 trees…
	Downside of Having 56 Trees…
	Tree merge is “easy”
	Each thread computes a partial word count on a portion of our data
	Parallel Binary merge
	Parallel Binary merge
	Worth implementing?
	new challenge: keep everything�running simultaneously!
	Terminology
	Our challenge: Not just data structures and parallelism, but bottlenecks
	Amdahl’s Law
	A Day Trip to Niagara Falls
	A Day Trip to Niagara Falls
	How Amdahl thought about parallelism
	How AmDahl Expressed his law
	What would be sequential in our �word-frequency application?
	What else would be sequential in our word count application?
	The file system ends up very busy!
	The file system ends up very busy!
	File access costs: Two aspects
	File access costs: Two aspects
	How the Linux file System is structured
	Cache: A concept used throughout computing
	Prefetching into a cache
	Prefetching into a cache
	Why Prefetching and caching help
	In fact the CPU itself uses caches and prefetching, too!
	Performance differs enormously!
	Ideal case
	Add it all up?
	Would Google or Microsoft care?
	Performance-critical tasks
	Our agenda in the next 24 lectures

