
WHY IT IS IMPORTANT (BUT HARD) TO 
LEVERAGE MODERN HARDWARE

Professor Ken Birman
CS4414 Lecture 3
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IDEA MAP FOR TODAY
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Revisit the example 
from lecture 1.  C++ 
was faster because it 

allowed Ken to 
leverage parallelism 

using threads.

Parallelism is a powerful tool, but 
only gives a speedup if the 

program itself is parallelizable.  
Sequential bottlenecks limit 

achievable speed

There are many “hidden” 
opportunities for parallelism that 

can benefit even a sequential 
program.  A good example is 

prefetching in a cache



REMINDER FROM LECTURE 1

We had a “word-count shootout” and C++ was much faster!

But what was the C++ program doing that yielded such a 
speedup, and why didn’t the standard Linux approach using 
existing commands do as well?  

And why were Python and Java so much slower?
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CORE IDEA

Our task was to compute word frequencies, then output them in a 
specific sorted order (descending by count, but alphabetic for ties).

The Linux kernel source code has about 26M lines of code in 74,000 
files.  It contains 4M distinct words, as defined above.

One option is to treat this as a big file and only use Linux commands.
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FINDING THE WORDS

Scan the files, breaking out each word and discarding garbage.  
This is called “splitting”.

Build a lookup tree… you’ll insert each “new” word into it with a 
count of 1.  If the word is found in the tree, just increment counter

At the end you’ll need to output the data sorted in descending 
order by frequency of each word: a second sorting task.
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HOW DID THE PROGRAMS WORK?

The pure Linux version was easy to write but looks horrible:
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find . -type f \( -name '*.c' -o –name ‘*.h’\) -exec cat {} \; |
tr -c '[A-Za-z0-9_ \012]' ' ' | tr -s '[ ]' '\012' | sort | uniq –c | sort –r –n 



HOW DID THE PROGRAMS WORK?

The pure Linux version was easy to write but looks horrible:

It uses what Linux calls a “pipe”.  A process prints output to stdout
(normally, the console) but we “redirect” it to become stdin (input) 
to another process.  This uses 5 pipe operations: |
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find . -type f \( -name '*.c' -o –name ‘*.h’\) -exec cat {} \; |
tr -c '[A-Za-z0-9_ \012]' ' ' | tr -s '[ ]' '\012' | sort | uniq –c | sort –r –n 



VISUALIZING THIS APPLICATION
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…
mm_segment_t fs = get_fs();
set_fs(KERNEL_DS);

fd = (*syscall_open)(file, flags, mode);
if(fd != -1) {

(*syscall_read)(fd, buf, size);
(*syscall_close)(fd);

}
set_fs(fs);
…

…
fd
syscall_open
file
flags
mode
Fd
1
syscall_read
fd
buf
size
…

…
1
buf
fd
fd
fd
file
flags
mode
size
syscall_open
syscall_read
…

…
1 1
1 buf
3 fd
1 file
1 flags
1 mode
1 size
1 syscall_open
1 syscall_read
…

find . -type f \( -name '*.c' -o –name ‘*.h’\) -exec cat {} \;   |    tr -c '[A-Za-z0-9_ \012]' ' ‘ | tr -s '[ ]' '\012’ | sort | uniq –c



WHERE DID WORD COUNTING OCCUR?

We did it in two steps. First, we sorted the file.

Uniq reads the sorted file and (–c flag) counts identical lines.  

The final sort was not shown on that slide: “sort –r –n”.  This 
outputs in descending order by number…  which isn’t quite right!
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sort –r –n will be in reversed alphabetical order for ties!



LINUX SUMMARY

It involved running a chain of 6 processes linked by pipes.  

It was quite slow.

A “hack” to fix the output order:  Negate the counts, sort with –n 
but not –r, then strip the “-” signs.  Ugly, but it would work.
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#4: Pure Linux (buggy sort order)
real 2m38.965s
user 2m43.999s
sys 27.084s



WRITING A PROGRAM TO DO THIS

Same idea, but now we need to “take control”

We will need programming tools to do the sorting and counting.

This lets us fix the issue of wanting our output to be sorted by 
(count,word) with descending count, but alphabetic word
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VISUALIZING THIS APPLICATION

Phase one: Count words in the file using a tree
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…
mm_segment_t fs = get_fs();
set_fs(KERNEL_DS);

fd = (*syscall_open)(file, flags, mode);
if(fd != -1) {

(*syscall_read)(fd, buf, size);
(*syscall_close)(fd);

}
set_fs(fs);
…

…
fd
syscall_open
file
flags
mode
fd
1
syscall_read
fd
buf
size
…

Sorted by name



VISUALIZING THIS APPLICATION
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(3, fd) (1, buf)

Word Count

fd 3

buf 1

Sorted by name Re-sorted by (count, name)

Output

Phase two: Sort by (count,word), then print output



PYTHON, JAVA AND C++ ALL HAVE 
PREBUILT TOOLS FOR EACH STEP

Every one of these steps can just use a standard library.

We end up with very elegant, concise code.

It looks pretty similar for all three languages
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LET’S START WITH PYTHON

Python has a built-in splitter, built in vectors, and a vector sort.  
It doesn’t leverage hardware parallelism.

One of our course staff
members (Lucy) coded this up… 
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#3 Lucy’s Python version
real 1m30.857s
user 1m30.276s
sys 0.572s



WHAT ABOUT JAVA VERSUS C++?

Lucy also created a Java version. It compiles in two stages:

 First to Java byte code

 Then to machine code (JIT)

Both compilation steps are highly efficient, but there are some 
situations in which Java can only know the type of an object at 
runtime.  This “runtime polymorphism” slows some libraries down.
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#2 Lucy’s Java version (no threads)
real 1m49.373s
user 3m16.950s
sys 8.742s



C++ VERSION?  

We created two C++ versions.

Sagar’s was pure and quite fast; you saw it in recitation Monday.

Ken’s dropped into C for file I/O steps and went further than 
Sagar in leveraging parallelism.  This was fastest of all.
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#1:  C++ using 24 parallel threads on 24 cores
real 4.645s
user 14.779s
sys 1.983s



C++ DISADVANTAGE

C++ is syntactically different from Java or Python, which can 
take a little time to adjust to.

A purist, like Sagar, wouldn’t like Ken’s code:  Sagar thinks I 
could have gotten the identical speed in pure C++ if I had a 
deeper perspective on some of its costs.

This is why Sagar is teaching you C++, rather than me!
CORNELL CS4414 - FALL 2020. 18



QUALITY OF MACHINE CODE

Whether we use Python or Java or C++, at the end of the day 
the computer executes machine code.  We saw some last week.

Python itself is implemented in Java or C++ and compiled.

But then Python interprets your code.  This causes slowdown.
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RUNTIME TYPES VERSUS STATIC TYPES

With Java “interesting” things (like tree nodes, or strings) are objects.

Java object types are learned at runtime… this is called “reflection”.  
Reflection has a cost, paid at runtime – programs run slower.  There 
are ways to speed reflection up, but overheads remain an issue.

C++ types are always fully known at compile time (statically).  This 
lets the compiler use type information to do code optimization.
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DATA STRUCTURES AND COMPILATION 
QUALITY ARE JUST THE START.

Our server had 28 cores, and each core had a way to pretend to be 
two CPUs (hyperthreading), making 56 CPUs.  

At first it seemed as if we should use two threads per core.  But Linux 
needed some cores, and hyperthreading turned out to slow things 
down.  We got the best numbers with 24 application threads.

After they finish, we could then merge the trees into one big count 
tree, combining the sub-results.
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IN FACT, WE SHOULD THINK OF THE 
APPLICATION AS A SERIES OF TASKS
I’m just using this term to mean “some part of a bigger job”.  
Stages would be another common term for this idea.

Overall, we want to scan all 74,000 files.  But it might make 
sense to subdivide this into a set of tasks.

A single task might do the work of scanning files 1 to 1600
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WE WANT TO KEEP ALL 26 CORES BUSY

This form of parallelism forces us to make a choice.  

We do this by creating “threads” that each perform a task
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THREAD:  A BIG TOPIC FOR CS4414

Think about a method that has no return value:

do_something(args….);

A thread runs some method in parallel with its parent.
“You clear the table… I’ll get some chips and salsa”
“You scan files 1…1000” … “I‘ll scan 1001…2000”
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VISUALIZING TASK-LEVEL PARALLELISM
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File System has 74,000 files in it

Computational 
thread 1 processes 
about 2000 files

Computational 
thread 3 processes 
about 2000 files

Computational 
thread 2 processes 
about 2000 files

Computational 
thread 24 processes 
about 2000 files

. . .



UNDERSTANDING THE TIMER OUTPUT

In this example, my program will run silently on 8 cores using 16 
threads

The “real” (wall clock) time 
was 18.469 seconds.

This is how long we waited for it to finish
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% time taskset 0xFF ./fast-wc -n16  -s

real    0m18.469s
user    0m43.406s
sys     0m18.203s



UNDERSTANDING THE TIMER OUTPUT

The “user” time measures compute
in my 16 threads.  It can be as 
much as 16*real time!
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% time taskset 0xFF ./fast-wc -n16  -s

real    0m18.469s
user    0m43.406s
sys     0m18.203s



WHY DID I SHOW EACH THREAD WITH ITS 
OWN WORD-COUNT TREE?
A tree node needs to live somewhere in physical memory.

If each core builds its own word-count tree for files it scans, that 
tree will be entirely in its local memory, and not shared.

Later we will see that sharing objects involves adding locking 
and that this brings costs.
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DOWN SIDE OF HAVING 56 TREES… 

… we end up with 56x more memory in use!

Linux had 4M “unique” words, but with 56 threads, only 27,000 words 
are seen by half or more!  3.2M are seen by just 1 or 2 threads.

Suppose an average word-count node requires 64 bytes, and that we 
end up with 250,000 nodes per thread.  With 56 times will require 
16MB x 56 = 896MB.  We have enough memory!
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DOWNSIDE OF HAVING 56 TREES…

At the end, we have 56 trees containing sub-counts.

Before sorting, we’ll need to merge them.
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TREE MERGE IS “EASY”

For each node in tree B, look up that word in tree A, sum the 
counts.  

C++ is like Java or Python: it has “iterators” for data structures

Just a tiny for loop.  But who should run it?
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EACH THREAD COMPUTES A PARTIAL WORD 
COUNT ON A PORTION OF OUR DATA
Visualization: Thread 1 runs the merge step.

… this is linear: 55 merge operations.  Can we do better?
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PARALLEL BINARY MERGE
In this picture, we merge from
the bottom to the top

For 56 threads:
Merge                  [1,2] and [3,4] and … [55,56]
Then                     [1,3] …………….       [53, 55]

…
Finally:                 [1, 29]
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1 2 3 4

1 3

Starts at the bottom

1 Ends at the very top

Threads 2 and 4 have no 
more work and terminate

Thread 3 terminates



PARALLEL BINARY MERGE
In this picture, we merge from
the bottom to the top

For 56 threads:
Merge                  [1,2] and [3,4] and … [55,56]
Then                     [1,3] …………….       [53, 55]

…
Finally:                 [1, 29]

CORNELL CS4414 - FALL 2020. 34

1 2 3 4

1 3

Starts at the bottom

1 Ends at the very top

Threads 2 and 4 have no 
more work and terminate

Thread 3 terminatesRule:  Each thread t has a variable k and initializes 
k = t (its own thread-id in [1…n]).  Initialize s to 1.

do {
If (k is even) { thread t terminates. }
else { merge tree t + s into tree t; }
k >>= 1; s <<= 1;

} until (all trees merged into tree 1);



WORTH IMPLEMENTING?

My program offers parallel merge (-p).  It helps… a tiny bit.

Issue: my C++ version was really bottlenecked by file I/O.  No 
matter how fast the threads run, the “sys 18.203s” remains!

C++ tricks can’t reduce runtime below 18.203s without some 
way of improving the efficiency of parallel file I/O!
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% time taskset 0xFF ./fast-wc -n16  -s

real    0m18.469s
user    0m43.406s
sys     0m18.203s

Time spent in Linux: 
File I/O



NEW CHALLENGE: KEEP EVERYTHING
RUNNING SIMULTANEOUSLY!
Finding the bottleneck can be difficult

Even our little merge program has many moving parts
 All those threads, building trees
 But also the work Linux is doing when the threads open files and

read them.

Which is the limiting stage of our complete “system” (fast-wc + Linux)?
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TERMINOLOGY

A bottleneck:  “the limiting factor” for some task… we don’t really 
use the term for a “balanced” task that has no limiting spot.

Compute-bound: The task is bottlenecked (limited) by the speed of 
calculations on some kind of in-memory data.

I/O bound:  The task is bottlenecked on fetching data from some 
kind of storage device, or over the network.
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bottleneck



OUR CHALLENGE: NOT JUST DATA STRUCTURES 
AND PARALLELISM, BUT BOTTLENECKS

How can we identify the bottlenecks that limit performance?

Can we even measure the degree of parallelism we are 
achieving?  

 In fact Linux has tools we can use for that.

 We’ll be learning about them!
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AMDAHL’S LAW

Gene Amdahl was a leading research on parallelism and 
supercomputing in IBM’s HPC division.

He became interested in a basic question.  How fast can 
computations be performed, with infinite parallelism?
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Gene on the family farm in Norway



A DAY TRIP TO NIAGARA FALLS

You and your friends want to do a safe, socially distanced trip 
to Niagara falls.

There are six of you.  One option 
is to rent a mini-bus and sit far
apart, but the mini-bus is slow
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A DAY TRIP TO NIAGARA FALLS
Better plan: You rent three convertible sports cars.
With roofs open, each can safely hold two people
Best of all, the cars are “insanely fast”.

But as you head north, the narrow road has a

bottleneck! Until you all pass this slow tractor, the

group will have to wait.
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Gene Amdahl’s Tractor in Norway



HOW AMDAHL THOUGHT ABOUT PARALLELISM

In any computation, we have some parts that are highly parallel, such 
as scanning our 74,000 different files.  Parallelism can speed those up.

But the computation will also have sequential tasks, which could include 
sequential logic buried in the operating system or the hardware.

The sequential work will limit the speedup due to parallelism!
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HOW AMDAHL EXPRESSED HIS LAW

Suppose that p represents the percentage of the task that can 
be parallelized.

Then 1/(1-p) is the maximum 
possible speedup
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WHAT WOULD BE SEQUENTIAL IN OUR 
WORD-FREQUENCY APPLICATION?
Each distinct word-count tree is managed by code that does 
“find or insert” and “increase the count” operations.

Those individual operations will be sequential.
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WHAT ELSE WOULD BE SEQUENTIAL IN OUR 
WORD COUNT APPLICATION?
Once we have our single tree, we have to re-sort it, because we 
wanted our printed output to have common words at the top.

Ken and Sagar both needed a second sorted tree for this.

In fact, counting and the final sort both have identical cost!
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THE FILE SYSTEM ENDS UP VERY BUSY!

These threads are opening and reading a lot of files

Can it keep up?

If not, our threads won’t be active…
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THE FILE SYSTEM ENDS UP VERY BUSY!
This is a famous issue with Linux.  For example, Google and 
Facebook have Linux servers holding huge collections of web 
pages or photos.  

They ended up putting images into “strips” to reduce the load
on the file system.
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FILE ACCESS COSTS: TWO ASPECTS

Each file has to be opened, which is a moment when Linux 
checks that the user has permission to access the file.

Once the file is open, it takes time to read and process data.

When reading, the fast-wc application does many “system calls”
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FILE ACCESS COSTS: TWO ASPECTS

With 56 threads doing concurrent reads, the file system is doing 
a lot of data fetches from the disk (in “blocks” of 4096 bytes)

If those reads become a bottleneck, our threads will pause and 
we lose parallelism.
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HOW THE LINUX FILE SYSTEM IS 
STRUCTURED
User level programs can’t access
files “directly”.   They use Linux.

The implementation is modular 
with multiple layers, but notice
the various caches: inodes,
buffers and directories.
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Virtual File System

User 
space

Kernel
space



CACHE: A CONCEPT USED THROUGHOUT COMPUTING

A pool of memory holding copies of data that “lives” elsewhere.  

 The Linux buffer pool is a cache of data read from files.  Each
time data is read, Linux keeps a copy (for a while).  If it fills up, 
Linux will “evict” something else to make room.

 If the application re-reads that same data Linux can
avoid the need to fetch it from the storage device again.  
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PREFETCHING INTO A CACHE

Linux also watches for sequential read patterns: you read the 
first 4096 bytes from a file, then the next 4096, then the next…

Linux will bet that you plan to continue doing this and issues one 
or two reads ahead of time, saving the data in cache.

Question: In what way is this a form of “parallelism”?
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PREFETCHING INTO A CACHE

Linux also watches for sequential read patterns: you read the 
first 4096 bytes from a file, then the next 4096, then the next…

Linux will bet that you plan to continue doing this and issues one 
or two reads ahead of time, saving the data in cache.

Question: In what way is this a form of “parallelism”?
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Why is prefetching a form of parallelism?

Answer: It lets us overlap the work of finding and reading
the next block of the file (the next 4096 bytes) with the 
word-counting logic for the current block.



WHY PREFETCHING AND CACHING HELP

Modern disks (SSD and rotating disks!) have large delays compared 
to memory access.  0.1ms or more delay.

Without a high rate of cache hits, we would spend 1 second (or 
longer) waiting for disk read requests to complete

With prefetching into the Linux buffer pool, we don’t experience 
those 0.1ms delays.  Our threads keep running
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IN FACT THE CPU ITSELF USES CACHES AND 
PREFETCHING, TOO!
A modern CPU has multiple caches:

 L1: the registers.  C++ might “cache” data in them

 L2 instruction and data cache: much larger, slightly slower 
pair of caches used by the the CPU.  

 L3 data cache: shared by the entire NUMA computer (all the
CPU cores).  

 Main memory: In modules; largest, but slowest to access
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PERFORMANCE DIFFERS ENORMOUSLY!

Accessing L1 cache on the Dell server I used as an example last 
time: 2 or 3 clock cycles.  The clock runs at 3GHz.
Accessing the L2 cache takes 12 or 13 clock cycles
L3 access jumps to perhaps 40-75 clock cycles.  The actual 
delay depends on how heavily loaded the memory bus is.
If we need to go to the memory module, there are two cases: 
the closest memory module will require125 clock cycles to 
access.  A remote memory module takes 250 clock cycles.
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IDEAL CASE

All of our 28 cores are busy (two threads each).  But maybe some 
are busy in the kernel, not in my user code.

Each word-count thread is hard at work counting on the current block

At every level of the memory hierarchy, prefetching is anticipating 
the next instruction needed, next data needed, next block of file 
data needed, and already loading it.
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ADD IT ALL UP?

It can be quite hard to document each incremental step that 
speeds up a complex parallel program such as word-count.

… There are just too many moving parts

But it is easy to gain factors of 10, and when we consider tasks 
with a lot of data parallelism, this can grow to 10,000x
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What limits the peak 
speed of this motor?



WOULD GOOGLE OR MICROSOFT CARE?

In fact they are kind of “meh” about 10% speedups.  But 10,000 
would be a different story.

Broadly, these companies don’t get excited about algorithms unless 
they are sure your code will run in an asymptotic case

But big “real” speedups can add up to real money and they care a 
lot about money. Our 30x example would probably matter.
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PERFORMANCE-CRITICAL TASKS

The speedups that count involve scenarios that impact profit.

Examples might include responsiveness of a web page or a 
Facebook feed, or how fast an ML algorithm trains.

Companies don’t care much about speed for “rare” things.
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OUR AGENDA IN THE NEXT 24 LECTURES

In the recitation, learn C++-17 and Linux.

Meanwhile, in class, learn to think in terms of performance-
aware program design that considers memory hierarchies, 
parallelism, prefetching and caching.

By the end of the semester, be able to write amazingly good 
code that is correct, secure (we’ll get to that), and performant!
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