
THE EVOLUTION AND ARCHITECTURE
OF MODERN COMPUTERS

Professor Ken Birman
CS4414 Lecture 2

CORNELL CS4414 - FALL 2020. 1

IDEA MAP FOR TODAY

CORNELL CS4414 - FALL 2020. 2

Computers are multicore
NUMA machines capable

of many forms of parallelism.
They are extremely complex

and sophisticated.

Individual CPUs don’t make this NUMA
dimension obvious. The whole idea is
that if you don’t want to know, you can

ignore the presence of parallelism

Compiled languages are
translated to machine language.

Understanding this mapping will allow us to
make far more effective use of the machine.

WHAT’S INSIDE? ARCHITECTURE = COMPONENTS
OF A COMPUTER + OPERATING SYSTEM

CORNELL CS4414 - FALL 2020. 3

CPU
Registers
(L1 cache)

L2 Cache

CPU
Registers
(L1 cache)

L2 Cache

L3 Cache

Memory Bus

Core Core

PCIe Bus

SSD
storage

100G
Ethernet

Memory Unit (DRAM)

A BIG PILE OF
HARDWARE

REQUIRING A LOT OF
HIGHLY SKILLED

CARE AND FEEDING!

WHAT’S INSIDE? ARCHITECTURE = COMPONENTS
OF A COMPUTER + OPERATING SYSTEM

CORNELL CS4414 - FALL 2020. 4

CPU
Registers
(L1 cache)

L2 Cache

CPU
Registers
(L1 cache)

L2 Cache

L3 Cache

Memory Bus

Core Core

PCIe Bus

SSD
storage

100G
Ethernet

Memory Unit (DRAM)

WHAT’S INSIDE? ARCHITECTURE = COMPONENTS
OF A COMPUTER + OPERATING SYSTEM

Job of the operating system (e.g. Linux) is to manage the
hardware and offer easily used, efficient abstractions that hide
details where feasible

CORNELL CS4414 - FALL 2020. 5

Operating System

File System

Network
Bash shell

Process you
launched by

running some
program

ARCHITECTURES ARE CHANGING RAPIDLY!

As an undergraduate (in the late 1970’s) I programmed a DEC
PDP 11/70 computer:
 A CPU (~1/2 MIPS), main memory (4MB)
 A storage device (8MB rotational magnetic disk), tape drive
 I/O devices (mostly a keyboard with a printer).

At that time this cost about $100,000

CORNELL CS4414 - FALL 2020. 6

ARCHITECTURES ARE CHANGING RAPIDLY!

As an undergraduate (in the late 1970’s) I programmed a DEC
PDP 11/70 computer:
 A CPU (~1/2 MIPS), main memory (4MB)
 A storage device (8MB rotational magnetic disk), tape drive
 I/O devices (mostly a keyboard with a printer).

At that time this cost about $100,000

CORNELL CS4414 - FALL 2020. 7

Bill Gates:
“640K ought to be

enough for anybody.”

TODAY: MACHINE PROGRAMMING I: BASICS

History of Intel processors and architectures

Assembly Basics: Registers, operands, move

Arithmetic & logical operations

C/C++, assembly, machine code

CORNELL CS4414 - FALL 2020. 8

MODERN COMPUTER: DELL R-740: $2,600

2 Intel Xenon chips with 28 “hyperthreaded” cores running at 1GIPS
(clock rate is 3Ghz)

Up to 3 TB of memory, multiple levels of memory caches

All sorts of devices accessible directly or over the network

NVIDIA Tesla T4 GPU: adds $6,000, peaks at 269 TFLOPS

CORNELL CS4414 - FALL 2020. 9

MODERN COMPUTER: DELL R-740: $2,600

2 Intel Xenon chips with 28 “hyperthreaded” cores running at 1GIPS
(clock rate is 3Ghz)

Up to 3 TB of memory, multiple levels of memory caches

All sorts of devices accessible directly or over the network

NVIDIA Tesla T4 GPU: adds $6,000, peaks at 269 TFLOPS

CORNELL CS4414 - FALL 2020. 10

One CPU core actually
runs two programs at

the same time

INTEL XENON NVIDIA TESLA

CORNELL CS4414 - FALL 2020. 11

Each core is like a little computer, talking to the others
over an on-chip network (the CMS)

The GPU has so many cores that a photo of the chip is
pointless. Instead they draw graphics like these to help
you visualize ways of using hundreds of cores to process

a tensor (the “block” in the middle) in parallel!

HOW DID WE GET HERE?

In the early years of computing, we went from machines built from
distinct electronic components (earliest generations) to ones built
from integrated circuits with everything on one chip.

Quickly, people noticed that each new generation of computer
had roughly double the capacity of the previous one and could run
roughly twice as fast! Gordon Moore proposed this as a “law”.

CORNELL CS4414 - FALL 2020. 12

BUT BY 2006 MOORE’S LAW
SEEMED TO BE ENDING

CORNELL CS4414 - FALL 2020. 13

WHAT ENDED MOORE’S LAW?

To run a chip at higher and higher speeds, we
use a faster clock rate and keep more of the
circuitry busy.

Computing is a form of “work” and work generates heat… as
roughly the square of the clock rate.

Chips began to fail. Some would (literally) melt or catch fire!
CORNELL CS4414 - FALL 2020. 14

If you overclock your
desktop this can happen…

BUT PARALLELISM SAVED US!

A new generation of computers emerged in which we ran the
clocks at a somewhat lower speed (usually around 2 GHz, which
corresponds to about 1 billion instructions per second), but had
many CPUs in each computer.

A computer needs to have nearby memory, but applications
needed access to “all” the memory. This leads to what we call a
“non-uniform memory access behavior”: NUMA.

CORNELL CS4414 - FALL 2020. 15

MOORE’S LAW WITH NUMA

CORNELL CS4414 - FALL 2020. 16

Graph from prior slide

… MAKING MODERN MACHINES COMPLICATED!

Prior to 2006, a good program
 Used the best algorithm: computational complexity, elegance
 Implemented it in a language like C++ that offers efficiency
 Ran on one machine

But the past decade has been disruptive! Suddenly even a single
computer might have the ability to do hundreds of parallel tasks!

CORNELL CS4414 - FALL 2020. 17

THE HARDWARE SHAPES THE
APPLICATION DESIGN PROCESS

We need to ask how a NUMA architecture impacts our designs.

If not all variables are equally fast to access, how can we
“code” to achieve the fastest solution?

And how do we keep all of this hardware “optimally busy”?

CORNELL CS4414 - FALL 2020. 18

DEFINITIONS OF TERMS WE OFTEN USE

Architecture: (also ISA: instruction set architecture)
The parts of a processor design that one needs to understand for
writing correct machine/assembly code
 Examples: instruction set specification, registers
 Machine Code: Byte-level programs a processor executes
 Assembly Code: Readable text representation of machine code

CORNELL CS4414 - FALL 2020. 19

DEFINITIONS OF TERMS WE OFTEN USE

Microarchitecture: “drill down”.

Details or implementation of the architecture
 Examples: memory or cache sizes, clock speed (frequency)

Example ISAs:
 Intel: x86, IA32, Itanium, x86-64
 ARM: Used in almost all mobile phones
 RISC V: New open-source ISA

CORNELL CS4414 - FALL 2020. 20

TODAY: MACHINE PROGRAMMING I: BASICS

History of Intel processors and architectures

Assembly Basics: Registers, operands, move

Arithmetic & logical operations

C/C++, assembly, machine code

CORNELL CS4414 - FALL 2020. 21

HOW A SINGLE THREAD COMPUTES

In CS4414 we think of each computation in terms of a “thread”

A thread is a pointer into the program instructions. The CPU
loads the instruction that the “PC” points to, fetches any operands
from memory, does the action, saves the results back to memory.

Then the PC is incremented to point to the next instruction

CORNELL CS4414 - FALL 2020. 22

Common way to
depict a single thread

ASSEMBLY/MACHINE
CODE VIEW
Programmer-Visible State
 PC: Program counter
 Address of next instruction
 Called “RIP” (x86-64)

 Register file
 Heavily used program data

 Condition codes
 Store status information about most recent

arithmetic or logical operation
 Used for conditional branching

Memory
Byte addressable array
Code and user data
Stack to support procedures

Puzzle:
 On a NUMA machine, a CPU is near a fast

memory but can access all memory.
 How does this impact software design?

CORNELL CS4414 - FALL 2020. 23

ASSEMBLY/MACHINE
CODE VIEW
Programmer-Visible State
 PC: Program counter
 Address of next instruction
 Called “RIP” (x86-64)

 Register file
 Heavily used program data

 Condition codes
 Store status information about most recent

arithmetic or logical operation
 Used for conditional branching

Memory
Byte addressable array
Code and user data
Stack to support procedures

Puzzle:
 On a NUMA machine, a CPU is near a fast

memory but can access all memory.
 How does this impact software design?

CORNELL CS4414 - FALL 2020. 24

This memory is
slower to access!

Same with this one…

…

…

…

Example: With 6 on-board DRAM modules and 12 NUMA CPUs, each pair of
CPUs has one nearby DRAM module. Memory in that range of addresses will be
very fast. The other 5 DRAM modules are further away. Data in those address
ranges is visible and everything looks identical, but access is slower!

LINUX TRIES TO HIDE MEMORY DELAYS

If it runs thread t on core k, Linux tries to allocate memory for t
(stack, malloc…) in the DRAM close to that k.

Yet all memory operations work identically even if the thread is
actually accessing some other DRAM. They are just slower.

Linux doesn’t even tell you which parts of your address space are
mapped to which DRAM units.

CORNELL CS4414 - FALL 2020. 25

THE HARDWARE UNDERSTANDS “PRIMITIVE”
DATA TYPES
“Integer” data of 1, 2, 4, or 8 bytes
Data values
Addresses (untyped pointers)

Floating point data of 4, 8, or 10
bytes (new: 4-bit, 8-bit, 16-bit)

Code: Byte sequences encoding
series of instructions

(SIMD vector data types of 8, 16, 32
or 64 bytes)

No aggregate types such as arrays or
structures
 Just contiguously allocated bytes in memory
 Example: Raw images are arrays in a

format defined by the camera or video,
such as RGB, jpeg, mpeg. The camera
understands the format. The host computer
the camera is attached to just sees bytes

CORNELL CS4414 - FALL 2020. 26

THE HARDWARE UNDERSTANDS “PRIMITIVE”
DATA TYPES
“Integer” data of 1, 2, 4, or 8 bytes
Data values
Addresses (untyped pointers)

Floating point data of 4, 8, or 10
bytes (new: 4-bit, 8-bit, 16-bit)

Code: Byte sequences encoding
series of instructions

(SIMD vector data types of 8, 16, 32
or 64 bytes)

No aggregate types such as arrays or
structures
 Just contiguously allocated bytes in memory
 Example: Raw images are arrays in a

format defined by the camera or video,
such as RGB, jpeg, mpeg. The camera
understands the format. The host computer
the camera is attached to just sees bytes

CORNELL CS4414 - FALL 2020. 27

X86-64 INTEGER REGISTERS

Can reference low-order 4 bytes (also low-order 1 & 2 bytes)
Not part of memory (or cache)

CORNELL CS4414 - FALL 2020. 28

SOME HISTORY: IA32 REGISTERS

CORNELL CS4414 - FALL 2020. 29

ASSEMBLY CHARACTERISTICS: OPERATIONS

Transfer data between memory and register
Load data from memory into register
Store register data into memory

Perform arithmetic function on register or memory data

Transfer control
Unconditional jumps to/from procedures
Conditional branches
Indirect branches

CORNELL CS4414 - FALL 2020. 30

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Moving Data
 Moving Data

movq Source, Dest

 Operand Types
 Immediate: Constant integer data

 Example: $0x400, $-533
 Like C constant, but prefixed with ‘$’
 Encoded with 1, 2, or 4 bytes

 Register: One of 16 integer registers
 Example: %rax, %r13
 But %rsp reserved for special use
 Others have special uses for particular instructions

 Memory: 8 consecutive bytes of memory at address given by register
 Simplest example: (%rax)
 Various other “addressing modes”

%rax

%rcx

%rdx

%rbx

%rsi

%rdi

%rsp

%rbp

%rN

Warning: Intel docs use
mov Dest, Source

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

movq Operand Combinations

Cannot do memory-memory transfer with a single instruction

movq

Imm

Reg

Mem

Reg
Mem

Reg
Mem

Reg

Source Dest C/C++ Analog

movq $0x4,%rax temp = 0x4;

movq $-147,(%rax) *p = -147;

movq %rax,%rdx temp2 = temp1;

movq %rax,(%rdx) *p = temp;

movq (%rax),%rdx temp = *p;

Src,Dest

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simple Memory Addressing Modes
 Normal (R) Mem[Reg[R]]
 Register R specifies memory address
 Aha! Pointer dereferencing in C

movq (%rcx),%rax

 Displacement D(R) Mem[Reg[R]+D]
 Register R specifies start of memory region
 Constant displacement D specifies offset

movq 8(%rbp),%rdx

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example of Simple Addressing Modes

whatAmI:
movq (%rdi), %rax
movq (%rsi), %rdx
movq %rdx, (%rdi)
movq %rax, (%rsi)
ret

void
whatAmI(<type> a, <type> b)
{

????
}

%rdi
%rsi

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example of Simple Addressing Modes

void swap
(long *xp, long *yp)

{
long t0 = *xp;
long t1 = *yp;
*xp = t1;
*yp = t0;

}

swap:
movq (%rdi), %rax
movq (%rsi), %rdx
movq %rdx, (%rdi)
movq %rax, (%rsi)
ret

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

%rdi

%rsi

%rax

%rdx

Understanding swap()

void swap
(long *xp, long *yp)

{
long t0 = *xp;
long t1 = *yp;
*xp = t1;
*yp = t0;

}

Memory

Register Value
%rdi xp
%rsi yp
%rax t0
%rdx t1

swap:
movq (%rdi), %rax # t0 = *xp
movq (%rsi), %rdx # t1 = *yp
movq %rdx, (%rdi) # *xp = t1
movq %rax, (%rsi) # *yp = t0
ret

Registers
xp

Addr

yp

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Understanding swap()

123

456

%rdi

%rsi

%rax

%rdx

0x120

0x100

Registers
Memory

swap:
movq (%rdi), %rax # t0 = *xp
movq (%rsi), %rdx # t1 = *yp
movq %rdx, (%rdi) # *xp = t1
movq %rax, (%rsi) # *yp = t0
ret

0x120

0x118

0x110

0x108

0x100

Address

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Understanding swap()

123

456

%rdi

%rsi

%rax

%rdx

0x120

0x100

123

Registers
Memory

swap:
movq (%rdi), %rax # t0 = *xp
movq (%rsi), %rdx # t1 = *yp
movq %rdx, (%rdi) # *xp = t1
movq %rax, (%rsi) # *yp = t0
ret

0x120

0x118

0x110

0x108

0x100

Address

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Understanding swap()

123

456

%rdi

%rsi

%rax

%rdx

0x120

0x100

123

456

Registers
Memory

swap:
movq (%rdi), %rax # t0 = *xp
movq (%rsi), %rdx # t1 = *yp
movq %rdx, (%rdi) # *xp = t1
movq %rax, (%rsi) # *yp = t0
ret

0x120

0x118

0x110

0x108

0x100

Address

Carnegie Mellon

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Understanding swap()

456

456

%rdi

%rsi

%rax

%rdx

0x120

0x100

123

456

Registers
Memory

swap:
movq (%rdi), %rax # t0 = *xp
movq (%rsi), %rdx # t1 = *yp
movq %rdx, (%rdi) # *xp = t1
movq %rax, (%rsi) # *yp = t0
ret

0x120

0x118

0x110

0x108

0x100

Address

Carnegie Mellon

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Understanding swap()

456

123

%rdi

%rsi

%rax

%rdx

0x120

0x100

123

456

Registers
Memory

swap:
movq (%rdi), %rax # t0 = *xp
movq (%rsi), %rdx # t1 = *yp
movq %rdx, (%rdi) # *xp = t1
movq %rax, (%rsi) # *yp = t0
ret

0x120

0x118

0x110

0x108

0x100

Address

Carnegie Mellon

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simple Memory Addressing Modes
 Normal (R) Mem[Reg[R]]
 Register R specifies memory address
 Aha! Pointer dereferencing in C

movq (%rcx),%rax

 Displacement D(R) Mem[Reg[R]+D]
 Register R specifies start of memory region
 Constant displacement D specifies offset

movq 8(%rbp),%rdx

Carnegie Mellon

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Complete Memory Addressing Modes
 Most General Form

D(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]+ D]
 D: Constant “displacement” 1, 2, or 4 bytes
 Rb: Base register: Any of 16 integer registers
 Ri: Index register: Any, except for %rsp
 S: Scale: 1, 2, 4, or 8 (why these numbers?)

 Special Cases
(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]]
D(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]+D]
(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]]

Carnegie Mellon

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Expression Address Computation Address

0x8(%rdx)

(%rdx,%rcx)

(%rdx,%rcx,4)

0x80(,%rdx,2)

Address Computation Examples

Expression Address Computation Address

0x8(%rdx) 0xf000 + 0x8 0xf008

(%rdx,%rcx) 0xf000 + 0x100 0xf100

(%rdx,%rcx,4) 0xf000 + 4*0x100 0xf400

0x80(,%rdx,2) 2*0xf000 + 0x80 0x1e080

%rdx 0xf000

%rcx 0x0100

Carnegie Mellon

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Expression Address Computation Address

0x8(%rdx)

(%rdx,%rcx)

(%rdx,%rcx,4)

0x80(,%rdx,2)

Address Computation Examples

Expression Address Computation Address

0x8(%rdx) 0xf000 + 0x8 0xf008

(%rdx,%rcx) 0xf000 + 0x100 0xf100

(%rdx,%rcx,4) 0xf000 + 4*0x100 0xf400

0x80(,%rdx,2) 2*0xf000 + 0x80 0x1e080

%rdx 0xf000

%rcx 0x0100

Carnegie Mellon

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Machine Programming I: Basics
 History of Intel processors and architectures
 Assembly Basics: Registers, operands, move
 Arithmetic & logical operations
 C/C++, assembly, machine code

Carnegie Mellon

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Address Computation Instruction
 leaq Src, Dst
 Src is address mode expression
 Set Dst to address denoted by expression

 Uses
 Computing addresses without a memory reference
 E.g., translation of p = &x[i];

 Computing arithmetic expressions of the form x + k*y
 k = 1, 2, 4, or 8

 Example
long m12(long x)
{

return x*12;
}

leaq (%rdi,%rdi,2), %rax # t = x+2*x
salq $2, %rax # return t<<2

Converted to ASM by compiler:

Carnegie Mellon

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Some Arithmetic Operations
 Two Operand Instructions:
Format Computation
addq Src,Dest Dest = Dest + Src
subq Src,Dest Dest = Dest − Src
imulq Src,Dest Dest = Dest * Src
shlq Src,Dest Dest = Dest << Src Synonym: salq
sarq Src,Dest Dest = Dest >> Src Arithmetic
shrq Src,Dest Dest = Dest >> Src Logical
xorq Src,Dest Dest = Dest ^ Src
andq Src,Dest Dest = Dest & Src
orq Src,Dest Dest = Dest | Src

 Watch out for argument order! Src,Dest
(Warning: very old Intel docs use “op Dest,Src”)

 No distinction between signed and unsigned int (why?)

Carnegie Mellon

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Some Arithmetic Operations
 One Operand Instructions
incq Dest Dest = Dest + 1
decq Dest Dest = Dest − 1
negq Dest Dest = − Dest
notq Dest Dest = ~Dest

 See book for more instructions

 Depending how you count, there are 2,034 total x86 instructions

 (If you count all addr modes, op widths, flags, it’s actually 3,683)

Carnegie Mellon

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Arithmetic Expression Example

Interesting Instructions
 leaq: address computation
 salq: shift
 imulq: multiplication

 Curious: only used once…

long arith
(long x, long y, long z)
{

long t1 = x+y;
long t2 = z+t1;
long t3 = x+4;
long t4 = y * 48;
long t5 = t3 + t4;
long rval = t2 * t5;
return rval;

}

arith:
leaq (%rdi,%rsi), %rax
addq %rdx, %rax
leaq (%rsi,%rsi,2), %rdx
salq $4, %rdx
leaq 4(%rdi,%rdx), %rcx
imulq %rcx, %rax
ret

Carnegie Mellon

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Understanding Arithmetic Expression Example

long arith
(long x, long y, long z)
{

long t1 = x+y;
long t2 = z+t1;
long t3 = x+4;
long t4 = y * 48;
long t5 = t3 + t4;
long rval = t2 * t5;
return rval;

}

arith:
leaq (%rdi,%rsi), %rax # t1
addq %rdx, %rax # t2
leaq (%rsi,%rsi,2), %rdx
salq $4, %rdx # t4
leaq 4(%rdi,%rdx), %rcx # t5
imulq %rcx, %rax # rval
ret

Register Use(s)

%rdi Argument x

%rsi Argument y

%rdx Argument z,
t4

%rax t1, t2, rval

%rcx t5

Carnegie Mellon

52Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Evolution of Intel Instruction Set
 The Intel instruction set has changed over the decades since it was first introduced.

 Intel is a believer in the “CISC” model: complex instructions that are highly optimized

 Modern example: vector parallel instructions (also called SIMD: Single instruction,
multiple data). Introduced to make the x86 more competitive with GPU accelerators
 Such as “Multiply these two vectors and put the result in this third vector”, or “sum up the elements

in this vector, and put the result here.”
 The underlying hardware uses parallel processing to do the job faster.
 The C++ compiler can recognize many of these patterns and will emit vector parallel instructions (if

the target computer supports them). You can also provide “hints” to the compiler, to do so.

 There are many more examples; we will see a few later in the semester

Carnegie Mellon

53Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Machine Programming I: Basics
 History of Intel processors and architectures
 Assembly Basics: Registers, operands, move
 Arithmetic & logical operations
 C/C++, assembly, machine code

Carnegie Mellon

54Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

text

text

binary

binary

Compiler (c++)

Assembler (c++ or as)

Linker (c++ or ld)

C/C++ program (p1.cpp p2.c)

Asm program (p1.s p2.s)

Object program (p1.o p2.o)

Executable program (p)

Static libraries
(.a)

Turning C/C++ into Object Code
 Code in files p1.cpp p2.c
 Compile with command: c++ pp1.cpp p2.c -o p
 There are often additional arguments such as –O3, -pg, -g…
 Put resulting binary in file p

Carnegie Mellon

55Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Compiling Into Assembly
C/C++ Code

(sum.c)long plus(long x, long y);

void sumstore(long x, long y,
long *dest)

{
long t = plus(x, y);
*dest = t;

}

Generated x86-64 Assembly
sumstore:

pushq %rbx
movq %rdx, %rbx
call plus
movq %rax, (%rbx)
popq %rbx
ret

Obtain with command

C++ sum.c

Produces file sum.s

This uses the “indirect” addressing mode: dest holds
a memory address and *dest is a long integer at that
address. We are using that location as a variable here!

Carnegie Mellon

56Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

What it really looks like
.globl sumstore
.type sumstore, @function

sumstore:
.LFB35:

.cfi_startproc
pushq %rbx
.cfi_def_cfa_offset 16
.cfi_offset 3, -16
movq %rdx, %rbx
call plus
movq %rax, (%rbx)
popq %rbx
.cfi_def_cfa_offset 8
ret
.cfi_endproc

.LFE35:
.size sumstore, .-sumstore

Carnegie Mellon

57Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

What it really looks like
.globl sumstore
.type sumstore, @function

sumstore:
.LFB35:

.cfi_startproc
pushq %rbx
.cfi_def_cfa_offset 16
.cfi_offset 3, -16
movq %rdx, %rbx
call plus
movq %rax, (%rbx)
popq %rbx
.cfi_def_cfa_offset 8
ret
.cfi_endproc

.LFE35:
.size sumstore, .-sumstore

Things that look weird
and are preceded by a ‘.’
are generally directives.

sumstore:
pushq %rbx
movq %rdx, %rbx
call plus
movq %rax, (%rbx)
popq %rbx
ret

Carnegie Mellon

58Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Assembly Characteristics: Data Types
 “Integer” data of 1, 2, 4, or 8 bytes
 Data values
 Addresses (untyped pointers)

 Floating point data of 4, 8, or 10 bytes

 (SIMD vector data types of 8, 16, 32 or 64 bytes)

 Code: Byte sequences encoding series of instructions

 No aggregate types such as arrays or structures
 Just contiguously allocated bytes in memory

Carnegie Mellon

59Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Assembly Characteristics: Operations

 Transfer data between memory and register
 Load data from memory into register
 Store register data into memory

 Perform arithmetic function on register or memory data

 Transfer control
 Unconditional jumps to/from procedures
 Conditional branches

Carnegie Mellon

60Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Code for sumstore
0x0400595:

0x53
0x48
0x89
0xd3
0xe8
0xf2
0xff
0xff
0xff
0x48
0x89
0x03
0x5b
0xc3

Object Code

 Assembler
 Translates .s into .o
 Binary encoding of each instruction
 Nearly-complete image of executable code
 Missing linkages between code in different

files

 Linker
 Resolves references between files
 Combines with static run-time libraries

 e.g., code for malloc, printf
 Some libraries are dynamically linked

 Linking occurs when program begins
execution

• Total of 14 bytes
• Each instruction

1, 3, or 5 bytes
• Starts at address
0x0400595

Carnegie Mellon

61Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Machine Instruction Example
 C Code
 Store value t where designated by
dest

 Assembly
 Move 8-byte value to memory
 Quad words in x86-64 parlance

 Operands:
t: Register %rax
dest: Register %rbx
*dest: MemoryM[%rbx]

 Object Code
 3-byte instruction
 Stored at address 0x40059e

*dest = t;

movq %rax, (%rbx)

0x40059e: 48 89 03

Carnegie Mellon

62Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disassembled

Disassembling Object Code

 Disassembler
objdump –d sum

 Useful tool for examining object code
 Analyzes bit pattern of series of instructions
 Produces approximate rendition of assembly code
 Can be run on either a.out (complete executable) or .o file

0000000000400595 <sumstore>:
400595: 53 push %rbx
400596: 48 89 d3 mov %rdx,%rbx
400599: e8 f2 ff ff ff callq 400590 <plus>
40059e: 48 89 03 mov %rax,(%rbx)
4005a1: 5b pop %rbx
4005a2: c3 retq

Carnegie Mellon

63Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disassembled

Dump of assembler code for function sumstore:
0x0000000000400595 <+0>: push %rbx
0x0000000000400596 <+1>: mov %rdx,%rbx
0x0000000000400599 <+4>: callq 0x400590 <plus>
0x000000000040059e <+9>: mov %rax,(%rbx)
0x00000000004005a1 <+12>:pop %rbx
0x00000000004005a2 <+13>:retq

Alternate Disassembly

 Within gdb Debugger
 Disassemble procedure
gdb sum
disassemble sumstore

Carnegie Mellon

64Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Warning!

 Disassembly is useful when debugging but prohibited in many situations.
A common and valid use is to understand what caused your own code
to crash. With a complex piece of code knowing the line number isn’t always enough.

 Hackers disassemble programs to look for coding errors that they can leverage to
steal passwords or even take control by sending malformed inputs.
This is why it is illegal to disassemble things like Microsoft Word.

 Cornell has harsh penalties for people who engage in hacking activities
while enrolled in the university. A hacker could be suspended or expelled!

	The Evolution and Architecture of Modern Computers
	Idea Map for today
	What’s Inside? Architecture = components of a computer + operating System
	What’s Inside? Architecture = components of a computer + operating System
	What’s Inside? Architecture = components of a computer + operating System
	Architectures are changing rapidly!
	Architectures are changing rapidly!
	Today: Machine Programming I: Basics
	Modern Computer: Dell R-740: $2,600
	Modern Computer: Dell R-740: $2,600
	Intel Xenon NVIDIA TESLA
	How did we get here?
	But by 2006 Moore’s Law �seemed to be ending
	What ended Moore’s Law?
	But parallelism saved us!
	Moore’s Law with NUMA
	… making modern machines complicated!
	The Hardware shapes the�Application Design process
	Definitions of terms we often use
	Definitions of terms we often use
	Today: Machine Programming I: Basics
	How a single thread computes
	Assembly/Machine �Code View
	Assembly/Machine �Code View
	Linux tries to hide memory delays
	The hardware understands “primitive” data types
	The hardware understands “primitive” data types
	x86-64 Integer Registers
	Some History: IA32 Registers
	Assembly Characteristics: Operations
	Moving Data
	movq Operand Combinations
	Simple Memory Addressing Modes
	Example of Simple Addressing Modes
	Example of Simple Addressing Modes
	Understanding swap()
	Understanding swap()
	Understanding swap()
	Understanding swap()
	Understanding swap()
	Understanding swap()
	Simple Memory Addressing Modes
	Complete Memory Addressing Modes
	Address Computation Examples
	Address Computation Examples
	Today: Machine Programming I: Basics
	Address Computation Instruction
	Some Arithmetic Operations
	Some Arithmetic Operations
	Arithmetic Expression Example
	Understanding Arithmetic Expression Example
	Evolution of Intel Instruction Set
	Today: Machine Programming I: Basics
	Turning C/C++ into Object Code
	Compiling Into Assembly
	What it really looks like
	What it really looks like
	Assembly Characteristics: Data Types
	Assembly Characteristics: Operations
	Object Code
	Machine Instruction Example
	Disassembling Object Code
	Alternate Disassembly
	Warning!

