
WELCOME TO CS4414
SYSTEMS PROGRAMMING

Professor Ken Birman
Lecture 1

CORNELL CS4414 - FALL 2020. 1

“IDEA MAP” FOR THE WHOLE SEMESTER

CORNELL CS4414 - FALL 2020. 2

Hardware: Capable of
parallel computing, offers a
NUMA runtime environment

with multiple CPU cores.

Linux: The operating system
“manages” the computer for us

and translates hardware features
into elegant abstractions.

The application must express your ideas in an elegant, efficient
way that promotes correctness and security while mapping

cleanly to the hardware
Linux abstractions expose that hardware in easily used forms.

We favor C++ here

WHEN YOU WRITE A PROGRAM, SHOULD YOU
CARE HOW IT GETS EXECUTED?
Most people are familiar with Java and Python

Java has lots of data types (and lots of fancy syntax!), generics,
other elaborate language features and compiles to a mix of
machine code and programming language runtime logic.

Python is easier: No need to fuss with data types, easy to create
arrays and transform all the objects with just one step.

CORNELL CS4414 - FALL 2020. 3

WHEN YOU WRITE A PROGRAM, SHOULD YOU
CARE HOW IT GETS EXECUTED?
Most people are familiar with Java and Python

Java has lots of data types (and lots of fancy syntax!), generics,
other elaborate language features and compiles to a mix of
machine code and programming language runtime logic.

Python is easier: No need to fuss with data types, easy to create
arrays and transform all the objects with just one step.

Which is better?
1) Java
2) Python

… why?

CORNELL CS4414 - FALL 2020. 4

CONSIDERATIONS PEOPLE OFTEN CITE

Expressivity and Efficiency: Can I code my solution elegantly
and easily? Will my solution perform well?

Correctness: If I end up with buggy code, I’ll waste time (and my
boss won’t be happy). A language should facilitate correctness.

Productivity: A language is just a tool. The easier it is to do the
job (which is to solve some concrete problem), the better!

CORNELL CS4414 - FALL 2020. 5

A SUBTLE CONSIDERATION: MODULARITY
AND COMPOSITIONALITY
Don’t fix things that already work. Ideally, we want the system
to provide lots of pre-packaged solutions for common tasks.

As a systems person, I’m very focused on this idea of pre-
packaged modular solutions.

Modern machine learning forces us to think in these terms!

CORNELL CS4414 - FALL 2020. 6

MICROSOFT FARMBEATS EXAMPLE

How many
programs are
in use here?

… hundreds!
A modern computing applications is a software ecosystem

CORNELL CS4414 - FALL 2020. 7

… THIS IS THE COMPLICATION

As we deal with larger and larger scale, the “modules” won’t be
simple things like a library that deals with managing a sorted list

We may need to “compose” entire programs or even systems,
which will need to share files or perhaps “objects”.

… the programming language is just a part of this ecology

CORNELL CS4414 - FALL 2020. 8

DRILL-DOWN CONSIDERATIONS

We want our solutions to perform well and “scale well”.

For many tasks this involves working on the “cloud” (big remote
data centers, like AWS or Microsoft Azure or Google).

In the cloud you rent the machines you need, as needed, but pay
for what you use. So performance ≅ $$$.

CORNELL CS4414 - FALL 2020. 9

DRILL-DOWN CONSIDERATIONS

We want our solutions to perform well and “scale well”.

For many tasks this involves working on the “cloud” (big remote
data centers, like AWS or Microsoft Azure or Google).

In the cloud you rent the machines you need, as needed, but pay
for what you use. So performance ≅ $$$.

Which performs better?
1) Java
2) Python
3) … something else?

… why?

CORNELL CS4414 - FALL 2020. 10

REASONS WE CARE ABOUT PERFORMANCE

Modern forms of computing are very power-hungry! And this is
causing growing impact on the global “electricity footprint”
associated with popular ways of solving problems.

Future of civilization might depend on whether your code can
minimize the amount of electricity it consumes!

CORNELL CS4414 - FALL 2020. 11

REASONS WE CARE ABOUT PERFORMANCE

Modern forms of computing are very power-hungry! And this is
causing growing impact on the global “electricity footprint”
associated with popular ways of solving problems.

Future of civilization might depend on whether your code can
minimize the amount of electricity it consumes!

https://venturebeat.com July 15, 2020
https://energyinnovation.org/2020/03/17/how-much-
energy-do-data-centers-really-use/

CORNELL CS4414 - FALL 2020. 12

Roughly 1% of global electric use, doubling
roughly every 2 years!

https://venturebeat.com/2020/07/15/mit-researchers-warn-that-deep-learning-is-approaching-computational-limits/
https://energyinnovation.org/2020/03/17/how-much-energy-do-data-centers-really-use/

COMPUTE TIME TO TRAIN ML MODELS

2-year doubling (Moore’s Law)

3.4-month doubling

How much of this is really
due to inefficient use of the
language and hardware?

Probably a lot!

CORNELL CS4414 - FALL 2020. 13

SOME CARS HAVE INSANE SPEED BUTTONS…

Guess what? So do
computers!

In CS4414 we’ll push the button.

(in ways that are correct, secure, natural, elegant)

CORNELL CS4414 - FALL 2020. 14

SMART USE OF THE “PLATFORM” IS HOW!

In CS4414 we will be learning about the Linux operating
system. Linux is universal these days.

We will use C++ as our programming language.

And we’ll learn to write code in smart ways that use the
hardware and software “ideally” to get the best possible speed.

CORNELL CS4414 - FALL 2020. 15

WHY LINUX? DOES THE O/S EVEN MATTER?

When building “interesting” applications we often
put a few building blocks together, Lego style.

Linux is full of small, easily used building blocks for common tasks,
and has easy ways to connect things to make a bigger application
from little pieces.

Productivity rises because you often don’t need to build new code –
you can just use these existing standard programs in flexible ways.

CORNELL CS4414 - FALL 2020. 16

LINUX AND THE HARDWARE: TWO
SIDES OF THE SYSTEM ARCHITECTURE

We will be learning about the modern computer hardware, not so
much from an internals perspective, but as users.

Linux lets you design applications that correspond closely to the
hardware. But then we need a programming language that lets us
talk directly to the operating system and the hardware.

CORNELL CS4414 - FALL 2020. 17

WHY ARE PYTHON AND JAVA EXPENSIVE?

Python: Interpreted
Compiles to a high-level representation that
enables an “interpretive” execution model.

In fact, Python is like a “general machine”
controlled by your code: Python itself runs on
the hardware. Then your code runs on Python!

Gradual typing: Python is very laissez-faire
and can’t optimize for specific data types.

Java: Runtime overheads
Compiles (twice: to byte code, then via JIT) but
rarely exploits full power of hardware. Limited
optimizations, parallelism

Dynamic types and polymorphism are costly.

Everything is an object, causing huge need for
copying and garbage collection.

It feels as if your programs run inside layers
and layers of “black boxes”

CORNELL CS4414 - FALL 2020. 18

HOW DOES C++ AVOID THESE PITFALLS?

C++ objects are a compile-time feature. At runtime, all the type-
related work is finished: no runtime dynamics.

The compiler “inline expands” and optimizes heavily. You help it.

Computers execute billions of instructions per second, yet we can
write code that will minimize the instructions and shape the choices.

Parallelism is easy, and the compiler automatically leverages modern
hardware features to ensure that you will have highly efficient code.

CORNELL CS4414 - FALL 2020. 19

LET’S DRILL DOWN ON SPEED

For some situations, C++ can be thousands of times faster than
Python or Java, on a single machine!
 Typically these are cases where the application has a lot of

parallelism that the program needs to exploit.
 For example, identifying animals in a photo entails a lot of

steps that involve pixel-by-pixel analysis of the image
 But in fact we can get substantial speedups just scanning

large numbers of big files… hence our word-count demo

CORNELL CS4414 - FALL 2020. 20

LET’S DRILL DOWN ON SPEED

We said that Python is slowest, Java is pretty good, but C++ can
beat both. C++ knocks the socks off Java for parallel tasks.

What would be a good way to “see that in action”?

A small example: “word count” in Python, Java and C++

CORNELL CS4414 - FALL 2020. 21

WORD COUNT TASK

Basically, we take our input files and “parse” them into words. All
three languages have prebuilt library methods for this. Discard non-
words (things like punctuation marks).

Keep a sorted list of words. As we see a word, we look it up and
increment a count for that word (adding it if needed).

At the end, print out a nicely formatted table of the words/counts in
descending order by count, alphabetic order for ties

CORNELL CS4414 - FALL 2020. 22

PAUSE HERE FOR A LITTLE DEMO

CORNELL CS4414 - FALL 2020. 23

THE SCOREBOARD

#1-A: Ken’s C++ Faster, but more complex…
real 4.645s
user 14.779s
sys 1.983s

#1-B (Sagar’s code, shorter & better use of C++…)
real 0m8.200s
user 0m49.295s
sys 0m2.145s

#3 Lucy’s Java version (no threads)
real 1m49.373s
user 3m16.950s
sys 8.742s

#2 Lucy’s Python version
real 1m30.857s
user 1m30.276s
sys 0.572s

This was only 19 lines of code!

#4: Pure Linux (buggy sort order)
real 2m38.965s
user 2m43.999s
sys 27.084s

CORNELL CS4414 - FALL 2020. 24

THE SCOREBOARD

#1-A: Ken’s C++ Faster, but more complex…
real 4.645s
user 14.779s
sys 1.983s

#1-B (Sagar’s code, shorter & better use of C++…)
real 0m8.200s
user 0m49.295s
sys 0m2.145s

#3 Lucy’s Java version (no threads)
real 1m49.373s
user 3m16.950s
sys 8.742s

#2 Lucy’s Python version
real 1m30.857s
user 1m30.276s
sys 0.572s

This was only 19 lines of code!

#4: Pure Linux (buggy sort order)
real 2m38.965s
user 2m43.999s
sys 27.084s

CORNELL CS4414 - FALL 2020. 25

C++ version was 34x faster than
Linux, 20x faster than Java or Python

THE SCOREBOARD

#1-A: Ken’s C++ Faster, but more complex…
real 4.645s
user 14.779s
sys 1.983s

#1-B (Sagar’s code, shorter & better use of C++…)
real 0m8.200s
user 0m49.295s
sys 0m2.145s

#3 Lucy’s Java version (no threads)
real 1m49.373s
user 3m16.950s
sys 8.742s

#2 Lucy’s Python version
real 1m30.857s
user 1m30.276s
sys 0.572s

This was only 19 lines of code!

#4: Pure Linux (buggy sort order)
real 2m38.965s
user 2m43.999s
sys 27.084s

CORNELL CS4414 - FALL 2020. 26

Notice that the user time is 3x larger
than the real time. Puzzle: how can

this be true?

HOW CAN A PROGRAM DO 14.7779S

OF COMPUTING IN 4.645S?
Could this just be a measurement mistake in Linux?

… in fact, if a process is using more than one thread it can
harness more than one CPU at the same time.

With 3 CPUs running continuously at full speed, it can do 3x
more work than the elapsed wall-clock time!

CORNELL CS4414 - FALL 2020. 27

A 3-horsepower system

DIDN’T I PROMISE “THOUSANDS X”
HOW DID THAT DROP TO 30X?
We counted words in text files: Limited parallelism.

The C++ program is able to process them in parallel side-by-
side streams, which was how we got the speedup.

With image processing or machine learning (tensor arithmetic),
the value of parallel processing is dramatically larger.

CORNELL CS4414 - FALL 2020. 28

PARALLELISM IN YOUR COMPUTER

A modern computer has multiple smaller computers (cores) that
all run on the same computer memory (RAM). It may also have a
special form of “accelerator” called a GPU.

To leverage this power, the computer offers special hardware
instructions. The compiler can use those for big speedups. You
can also use “threads”: a method of having more than one
computational activity running within a single program.

CORNELL CS4414 - FALL 2020. 29

6-core Intel chip with GPU

PARALLELISM IN YOUR COMPUTER

A modern computer has multiple smaller computers (cores) that
all run on the same computer memory (RAM). It may also have a
special form of “accelerator” called a GPU.

To leverage this power, the computer offers special hardware
instructions. The compiler can use those for big speedups. You
can also use “threads”: a method of having more than one
computational activity running within a single program.

CORNELL CS4414 - FALL 2020. 30

TOPIC FROM BEYOND CS4414:
CLOUD COMPUTING TAKES THIS FURTHER
For compute-intensive tasks, companies set up an account on a big
commercial data center called a cloud. “Rent, don’t own”.

You can easily run a program on hundreds of thousands of
computers, each instance processing different input files.
 So a single job might have millions of threads working in

parallel, and each using parallel computing instructions!
 … the hard part is when they need to combine their results.

CORNELL CS4414 - FALL 2020. 31

MODERN CLOUD COMPUTING DATA CENTER

CORNELL CS4414 - FALL 2020. 32

ISSUES INTRODUCED BY LARGE SCALE

Program design: When we use networking to let processes talk
to one-another, they need ways to share data, cooperate,
coordinate, recover from failures.

Algorithmic: Just like in a single machine, there are more
efficient and less efficient data structures and “protocols”

Security: At scale it is common to run into new kinds of attacks,
and we need different styles of defense. Sensitive data is an
especially important concern (like private information).

CORNELL CS4414 - FALL 2020. 33

AND YET…

Many jobs today involve larger scale computing platforms, even if
you don’t work “for” a cloud company.

A factor of 10x can be dramatic if the code is used by Google to
respond to a search or is part of the Facebook image feed.

C++ is the “way of progress” for demanding tasks.

CORNELL CS4414 - FALL 2020. 34

First woman to win the
Nobel Prize

LEARNING LINUX AND C++

You came into this class comfortable in an object oriented language,
and learned data structures, so C++ should be easy to learn.

 The operators and syntax and features will remind you of Java

 There are extra operators, and those we will teach you, and things
like dynamic memory management, but we won’t teach basics:
those you need to learn in a hands-on way!

 Similarly, we will provide pointers to lists of Linux commands
and bash syntax, but these are topics for experiential learning

CORNELL CS4414 - FALL 2020. 35

EXAMPLE: HELLO WORLD IN C++

CORNELL CS4414 - FALL 2020. 36

EXAMPLE: WORD COUNT IN C++
This is the “core” of the counting logic:

CORNELL CS4414 - FALL 2020. 37

using WC = std::map<std::string, int>;
WC sub_count[MAXTHREADS];

inline void found(int& tn, char*& word)
{

sub_count[tn][std::string(word)]++;
}

EXAMPLE: WORD COUNT IN C++
… and here is the core of the sorting logic:

CORNELL CS4414 - FALL 2020. 38

struct SortOrder: public std::binary_function<std::pair<int, std::string>, std::pair<int, std::string>, bool>
{

bool operator()(const std::pair<int, std::string>& lhs, const std::pair<int, std::string>& rhs) const
{

return lhs.first > rhs.first || (lhs.first == rhs.first && lhs.second < rhs.second);
}

};

using SO = std::map<std::pair<int, std::string>, int, SortOrder>;
SO sorted_totals;
for(auto wc: totals)
{

std::pair<int,std::string> new_pair(wc.second, wc.first);
sorted_totals[new_pair] = wc.second;

}

FRIGHTENING SYNTAX!

But the course staff is used to C++ and we can help.

Once you really learn it, you’ll start to find it much more natural.

The one big thing to know is that even a single misplaced
character can trigger pages of compiler complaints, so you do
need to understand exactly what you are “asking it to do!”

CORNELL CS4414 - FALL 2020. 39

THE WAY OF PROGRESS BEING “NEITHER
EASY NOR FAST” ASPECT?
C++ will eventually start to feel much easier, after a few weeks.

But you don’t automatically get high speed. That takes more
work – rewarding work, because you can measure the
improvements as you make them, but it does take effort!

The key is to be able match your coding goals to the hardware.

CORNELL CS4414 - FALL 2020. 40

WHEN I FIRST CODED MY SOLUTION, MY
PROGRAM WAS VERY SHORT, BUT RATHER SLOW.

I added parallel threads – which complicated the solution but
helped a lot. Then because file opening was slow, I added a
thread to “preopen” files before they were needed.

The C++ library for file opening and reading files was a
bottleneck, so I switched to calling Linux file open and Linux file
read, directly. This gave an additional speedup

CORNELL CS4414 - FALL 2020. 41

FINAL VERSION

With threads, my code was “part way” to the goal.

Thinking about bottlenecks, I decided to add one more parallel
computing idea (we’ll see it soon). Then I changed some of my
very heavily-used methods to be “inlined”

This gave that 20x-30x compared to Python and Java.

CORNELL CS4414 - FALL 2020. 42

ROLL YOUR OWN? OR LEARN SOME WEIRD
LIBRARY INTERFACE?
In C++ we could certainly code everything from scratch.

But library solutions have the benefit of being standard, widely
used, and heavily tested.

C++ libraries are also exceptionally performant, and for our
course this is an important consideration!

CORNELL CS4414 - FALL 2020. 43

REMAINDER OF WORD COUNT IN C++

I didn’t show you:

 The standard includes required to import the std:: libraries

 The main program that calls the “getWordCount” method

 A bunch of little helper methods I wrote.

CORNELL CS4414 - FALL 2020. 44

WHY WOULD PEOPLE CARE ABOUT WORD
COUNTING IN A MODERN SYSTEM, LIKE FOR NLP?

Natural language programs are based on word counts, but :

White space, punctuation, hyphenation is removed

 Conjunctions such as “a”, “and”, “or” are discarded

 Upper case is mapped to lower-case

 Stems are removed: “flying” might map to “fly”.

CORNELL CS4414 - FALL 2020. 45

WHY DO NLP SYSTEMS CARE ABOUT STEMS?

When people do a web search such as “learn to fly small
plane” or “birds that cannot fly” small style differences arise.

Stems have been shown to be much more stable and consistent

Web pages for flying schools would probably use “fly” very
extensively. In contrast “that” and “to” are less relevant…

CORNELL CS4414 - FALL 2020. 46

WHAT SHAPES THE PERFORMANCE OF
“STEMMED, LOWER-CASE WORD COUNT”?

 Speed of reading the data, especially if the file is large.
At Google, some AI systems that learn from web pages scan
hundreds of billions of them.

 Splitting, stemming, mapping to lower case, discarding conjunctions
 If we use new variables to hold stemmed words, we’ll need

to “allocate” memory and initialize the object.
 We’ll need to keep a sorted list of words, and look for each

word as we discover it, and increase the associated counter.

CORNELL CS4414 - FALL 2020. 47

GLIMPSE OF LINUX AND BASH
This bash command runs c++, telling it to optimize the code,
warn in a “fussy” way.

% g++ -std=c++11 -O3 -Wall -Wpedantic -pthread -o fast-wc fast-wc.cpp

This does a timed run of the program (fast-wc):
% time taskset 0xFF ./fast-wc -n4 -p

CORNELL CS4414 - FALL 2020. 48

fast-wc with 4 cores, 50095 files, 16 blocks per read, parallel merge ON
define | 2008083

struct | 1694853
0 | 1268529
if | 1172461

MORE FUN WITH BASH

In fact we can use bash to…
 Automatically open a file and have it look like “console input”

in our C++ program.
 Put the program output into a file
 Run a program in the background
 Put the program output into a bash variable, and then pass

that variable as a command-line argument to some other program
 … the list goes on for quite a while!

CORNELL CS4414 - FALL 2020. 49

PRACTICAL CONSIDERATIONS Organizational stuff

CORNELL CS4414 - FALL 2020. 50

IS C++ HARD TO LEARN?

C++ is easy to learn at a basic level (in CS4414 we won’t dive into
the really fancy, obscure, C++ features).

C++ was designed to make the mapping to the hardware and to the
machine instructions “evident”. An interview with the inventor of C++.

Unlike that sense of black-boxes everywhere, with C++ you can know
everything your code is doing, even to very low levels.

CORNELL CS4414 - FALL 2020. 51

http://www.odbms.org/blog/2020/07/thirty-years-c-interview-with-bjarne-stroustrup/

DEVELOPER TOOLS (IDE)

Ken and Sagar do many things at the “command line” layer of Linux.
Neither uses any kind of IDE for C++ on Linux.

But there are good IDE options, like Eclipse and Visual Studio Code

Linux comes in many flavors. We prefer Ubuntu, the bash shell, and
the “cmake” application builder. Sagar loves the emacs editor.

CORNELL CS4414 - FALL 2020. 52

RESOURCES

The whole course closely tracks the main textbook by Bryant and
O’Halloran at CMU.
 Main difference is that CMU CS213 views the class as an

introduction to programming languages and compilers
 CS4414 has a systems-centric focus. But in fact the textbook

includes this material, even if CMU’s course brushes over it
To fill in gaps, we also recommend getting a C++ textbook and
learning to access the online Linux materials

CORNELL CS4414 - FALL 2020. 53

SETUP

No matter what you use, Linux requires some (annoying) setup,
and you’ll need to use online resources to get these right.

Otherwise things like console colors or the editor colors might be
difficult to read. Linux still works, but could be hard to use. c++
might get confused and not find things like the std library.

Ample online instructions about every single step…
CORNELL CS4414 - FALL 2020. 54

EQUIPMENT

CS4414 will be a very hands-on course, with a stream of homework
assignments that you’ll work on for one or two weeks at a time.

Recitation will introduce the things you need to know and drill down
on “surprises” relative to Java and Python, but you really learn these
things by doing.

You can use your own laptop, or remote login to a Cornell machine in
CSUG or MEng lab, but you won’t be able to work on an iPad or
Android Tablet that lacks a keyboard and mouse.

CORNELL CS4414 - FALL 2020. 55

YOU CAN LEARN IN GROUPS… BUT MUST
WORK ALONE
We encourage study groups. Learning as a group is great!

But… every single thing you do on a graded homework must be done
by you, and not with any help from friends or CourseHero or other
cheats. Graded work must be your individual work.

We have outstanding TAs (ugrad and PhD) to help if you get stuck,
and you can also post questions on Piazza (or answer them)

CORNELL CS4414 - FALL 2020. 56

EXAMS (NONE), QUIZZES (SOME), HOMEWORK

In 2020, in-person exams are tricky to schedule and proctor and
grade, so we are planning to assess purely on at-home work.

This will be mostly homeworks, but we may also have some
quizzes that would include questions drawn from lecture material

You are required to watch every lecture either in real-time or
offline. We are exploring ways to track this in Canvas.

CORNELL CS4414 - FALL 2020. 57

CURVE

CS4414 is new, so there is no history to base a curve on.

Our feeling is that most students should easily be able to earn a
grade in the range from B- to A+.

Grades below B- would only be used if a student really isn’t
doing well, especially if that person is also skipping lectures.

CORNELL CS4414 - FALL 2020. 58

ACADEMIC INTEGRITY

We use automated tools to look for suspicious code.

Ask us for help if you fall behind or have trouble with a homework.
We’ll help, and you’ll do well in the course.

If you cheat in CS4414 you trade a B- or better for an F. You can’t
drop a class once this happens or expunge that F, it goes on your
record, and you could be expelled from the CS program.

CORNELL CS4414 - FALL 2020. 59

DOWNSTREAM COURSES

CS4414 is a great preparation for other courses!

In AI and ML courses, you’ll need to write really high quality, fast
code. The experience you gain here will pay off there.

CS4414 feeds naturally into systems courses like O/S,
programming languages and compilers, security, networking,
databases, embedded systems and IoT, cloud computing…

CORNELL CS4414 - FALL 2020. 60

	Welcome to CS4414 �Systems Programming
	“Idea map” for The whole semester
	When you write a program, should you care how it gets executed?
	When you write a program, should you care how it gets executed?
	Considerations people often cite
	A subtle consideration: Modularity and compositionality
	Microsoft FarmBeats Example
	… this is the complication
	Drill-down considerations
	Drill-down considerations
	Reasons we care about performance
	Reasons we care about performance
	Compute time to train ML models
	Some cars have insane speed buttons…
	Smart use of the “platform” is how!
	Why Linux? Does the O/S even matter?
	Linux and the Hardware: two�Sides of the system architecture
	Why are Python and Java expensive?
	How does C++ avoid these pitfalls?
	Let’s Drill down on speed
	Let’s Drill down on speed
	Word count task
	Pause here for a little demo
	The Scoreboard
	The Scoreboard
	The Scoreboard
	How can a program do 14.7779s �of computing in 4.645s?
	Didn’t I promise “thousands x” �How did that drop to 30x?
	Parallelism in your computer
	Parallelism in your computer
	Topic from Beyond CS4414:�Cloud computing takes this further
	Modern Cloud Computing Data Center
	Issues introduced by large scale
	And yet…
	Learning Linux and C++
	Example: Hello World in C++
	Example: Word Count in C++�
	Example: Word Count in C++�
	Frightening Syntax!
	The way of progress being “neither easy nor fast” aspect?
	When I first coded my solution, my program was very short, but rather slow.
	Final version
	Roll your own? Or learn some weird library interface?
	Remainder of Word Count in C++
	Why would people care about word counting in a modern system, like for nlp?
	Why do NLP systems care about stems?
	What shapes the performance of “stemmed, lower-case word count”?
	Glimpse of Linux and Bash
	More fun with bash
	Practical Considerations
	Is C++ hard to learn?
	Developer tools (IDE)
	Resources
	Setup
	Equipment
	You can learn in groups… but must work alone
	Exams (none), Quizzes (some), Homework
	Curve
	Academic Integrity
	Downstream courses

