
P2: Cooperative Thread
Yu-Ju Huang

Robbert van Renesse

1

Implement the following interface:

void thread_init();
• initialize the user-level threading module (process becomes a thread)

void thread_create(void (*f)(void *arg), void *arg, unsigned int stack_size);
• create another thread that executes f(arg)

void thread_yield();
• yield to another thread (thread scheduling is non-preemptive)

void thread_exit();
• thread terminates and yields to another thread or terminates entire process

2

We run one thread at a time

RunQueue

Scheduling State of a Thread
• Running
• currently running

• Runnable (aka Ready)
• TCB on the run queue (aka ready queue)

• Terminated
• TCB marked as having terminated

3

• save the state of the other threads in a thread control
block (TCB)
•The state of a thread (aka context) consists of
• its registers (including PC, SP, and FP)
• its stack
• possibly more stuff (scheduling state)
•Context switch when a thread exits or yields

We run one thread at a time

4

Data Structures

• Thread
• Function
• Arguments
• Scheduling state
• Stack memory
• Stack pointer

• Threading library
• RunQueue
• Current thread

5

Synchronization Primitives

6

Condition variables

struct cv;

// wait for a condition variable
// calling thread goes to sleep
void cv_wait(struct cv* condition);

// signal for a condition variable
// calling thread keeps going and move a BLOCKED thread to runnable
void cv_signal(struct cv* condition);

Condition variables

struct cv;

// wait for a condition variable
void cv_wait(struct cv* condition);

// signal for a condition variable
void cv_signal(struct cv* condition);

Your job

• Implement the struct cv

• Implement the two cv_* APIs

Your job

• Implement the struct cv
• Wait queue

• Implement the two cv_* APIs
• cv_wait: put the calling thread into the queue
• cv_signal: move one thread in the queue to RunQueue

On Testing
Yu-Ju Huang

Robbert van Renesse

Tip 1: use assertions in your data structure
code (and not in your test code)
• Pepper your queue code with assertions before testing
• think carefully about invariants
• check invariants as often as possible
• write code to check invariants

Tip 1: use assertions in your data structure
code (and not in your test code)
• Pepper your queue code with assertions before testing
• think carefully about invariants
• check invariants as often as possible
• write code to check invariants

• Example:
• write function queue_check(q) that walks the linked list. When it gets to

the end, check that the tail points where it’s supposed to and that the length
is correct
• also check that (q->len == 0) == (q->head == NULL) == (q->tail == NULL)
• assert(queue_check(q)) at the beginning and end of every function
• Note that assertions automatically are turned off in production code

• May want to comment them out before submission!

Quick aside on using assertions

• assert(P) --- executable comment
• Important: P should have no side effects
• so, don’t do assert(queue_dequeue(q) == 0)
• so, don’t do assert((counter++) >= 0);

• assert statements should be no-ops and can be turned off
• use assert statements to check correctness, not to detect failures
• so, don’t do p = malloc(); assert(p != NULL)

• split conjunctions
• so, don’t do assert(P && Q) but do assert(P); assert(Q)

Tip 2: don’t ignore warnings

• Compile with –g –Wall
• e.g., cc –g –Wall x.c

• Do *not* submit code with outstanding warnings
• Do *not* get rid of warnings by hasty casting
• Be very careful and only cast if you know exactly what you’re doing

Tip 3: run small tests

• Don’t run very large tests (10s of operations or more)
• you are unlikely to find bugs that you can’t find with small tests
• it’s hard to figure out what went wrong
• tests may take a long time for no good reason

Tip 4: use valgrind

• Will immediately notify you if
• you are using uninitialized memory (e.g., from malloc())
• you are accessing illegal memory
• you are leaking memory

• It will give you lots of information about how it happened
• Easiest to install under Linux, so use a virtual machine or log into

CSUGlab Linux machines

Tip 5: only check things that are specified

• Carefully read the spec and design tests for each specified case
• Do not check things that are not specified
• queue_length(NULL) has unspecified behavior---don’t test it

Tip 6: think carefully about corner cases

• dequeuing from an empty queue
• does it return the right error value?

• deleting the last element enqueued
• does it update the tail pointer? How do you test for that?
• enq(1); enq(2); del(2); enq(3); deq() == 1?; deq() == 3?

• deleting the last element of a queue
• does it reset everything?

• deleting a non-existent element?
• does it leave the queue unchanged?

• insert on an empty queue?
• does it update the tail pointer?

• enqueue(item = NULL); delete(item = NULL);

Tip 7: test your test program

• don’t just run it against your queue implementation
• take your queue implementation and break it in various ways
• see if your test program notices

Tip 8 (advanced): be systematic
(no need to worry about corner cases)
• Define a set of basic operations you might want to use
• enq(1), enq(2), enq(NULL), deq(pitem == NULL), deq(pitem != NULL), ins(1),

ins(2), ins(NULL), len(), del(1), del(2), del(NULL), len() iterate()
• Systematically check all sequences of operations
• all sequences of length 1
• all sequences of length 2
• all sequences of length 3
• …

• With 13 basic operations, there are 136 (approx. 5 million) sequences
of length 6
• likely to trigger any bug

Checking a sequence of operations

• How do you know a sequence worked correctly?
• Check against specification!
• But what if spec is written in English?
• Translate spec into C!

#define MAX_QUEUE_SIZE 100

typedef struct queue {
void *buffer[MAX_QUEUE_SIZE];

unsigned in, out;
} *queue_t;

queue_t gold_new() {
struct queue *q = calloc(1, sizeof(*q));
q->in = q->out = MAX_QUEUE_SIZE / 2;
return q;

}

int gold_enqueue(queue_t q, void* item) {
assert(q->out <= q->in);
assert(q->in < MAX_QUEUE_SIZE);
q->buffer[q->in++] = item;
return 0;

}

Today

• P1 due

• Testing

• Threading library

• Have a nice break!

