P2: Cooperative Thread

Yu-Ju Huang
Robbert van Renesse

Implement the following interface:

void thread _init();
* initialize the user-level threading module (process becomes a thread)

void thread create(void (*f)(void *arg), void *arg, unsigned int stack_size);
e create another thread that executes f(arg)

void thread_vyield();

* vield to another thread (thread scheduling is non-preemptive)

void thread_exit();
* thread terminates and yields to another thread or terminates entire process

We run one thread at a time

RunQueue

Scheduling State of a Thread

* Running
e currently running

 Runnable (aka Ready)
* TCB on the run queue (aka ready queue)

* Terminated
* TCB marked as having terminated

We run one thread at a time

e save the state of the other threads in a thread control
block (TCB)

* The state of a thread (aka context) consists of
* its registers (including PC, SP, and FP)
* jts stack
e possibly more stuff (scheduling state)

* Context switch when a thread exits or yields

Data Structures

* Thread

* Function

* Arguments

* Scheduling state
e Stack memory
 Stack pointer

* Threading library
* RunQueue
e Current thread

Synchronization Primitives

Condition variables

struct cv;

// wait for a condition variable
// calling thread goes to sleep
void cv_wait(struct cv* condition);

// signal for a condition variable
// calling thread keeps going and move a BLOCKED thread to runnable

void cv_signal(struct cv* condition);

void*x buffer[3]:
int caunth= 6:
int head = 0, tail = 0;

Condition variables Struct <y nonenpty, nonfull;

void produce(void* item) {

for (int 1 = 0; 1 < 10; i++) {
. while (count == 3) cv_wait(&nonfull);
struct cv;
buffer[taill = item;
tail = (tail + 1) % 3:

// wait for a condition variable count += 1;

cv_signal(&nonempty);

void cv_wait(struct cv* condition); }

voidkx consume() {

// signal for a condition variable while (1) {

while (count == @) cv_wait(&nonempty);
void cv_signal(struct cv* condition);

voidx result = buffer[head];

head = (head + 1) % 3;

count —= 1;

cv_signal(&nonfull);

Your job

* Implement the struct cv

* Implement the two cv_* APIs

Your job

* Implement the struct cv
* Wait queue

* Implement the two cv_* APIs
e cv_wait: put the calling thread into the queue
e cv_signal: move one thread in the queue to RunQueue

On Testing

Yu-Ju Huang

Robbert van Renesse

Tip 1: use assertions in your data structure
code (and not in your test code)

* Pepper your queue code with assertions before testing
* think carefully about invariants
* check invariants as often as possible
e write code to check invariants

Tip 1: use assertions in your data structure
code (and not in your test code)

* Pepper your queue code with assertions before testing
* think carefully about invariants
* check invariants as often as possible
e write code to check invariants

* Example:

 write function queue_check (q) that walks the linked list. When it gets to

the end, check that the tail points where it’s supposed to and that the length
IS correct

* also check that (g->len == 0) == (g->head == NULL) == (g->tail == NULL)
 assert(queue _check(qg)) atthe beginningand end of every function

* Note that assertions automatically are turned off in production code
* May want to comment them out before submission!

Quick aside on using assertions

assert(P) --- executable comment

* Important: P should have no side effects
* so,don'tdo assert(queue dequeue(q) == 0)
* so,don'tdo assert((counter++) >= 0);

* assert statements should be no-ops and can be turned off

e use assert statements to check correctness, not to detect failures
* so,dontdop = malloc(); assert(p != NULL)

* split conjunctions
* so,dontdo assert(P && Q) butdoassert(P); assert(Q)

Tip 2: don’t ignore warnings

* Compile with —g —Wall

e e.g., cc—g—-Wall x.c
* Do *not* submit code with outstanding warnings

* Do *not* get rid of warnings by hasty casting
* Be very careful and only cast if you know exactly what you’re doing

Tip 3: run small tests

* Don’t run very large tests (10s of operations or more)
e you are unlikely to find bugs that you can’t find with small tests
* it’s hard to figure out what went wrong
 tests may take a long time for no good reason

Tip 4: use valgrind

* Will immediately notify you if

* you are using uninitialized memory (e.g., from malloc())
e you are accessing illegal memory
e you are leaking memory

* It will give you lots of information about how it happened

 Easiest to install under Linux, so use a virtual machine or log into
CSUGIab Linux machines

Tip 5: only check things that are specitied

 Carefully read the spec and design tests for each specified case

* Do not check things that are not specified
e queue_length(NULL) has unspecified behavior---don’t test it

Tip 6: think carefully about corner cases

* dequeuing from an empty queue
e does it return the right error value?

* deleting the last element enqueued
* does it update the tail pointer? How do you test for that?

* enq(1); enq(2); del(2); enq(3); deq() == 1?; deq() == 3?

* deleting the last element of a queue
* does it reset everything?

* deleting a non-existent element?
* does it leave the queue unchanged?

* insert on an empty queue?
* does it update the tail pointer?

e enqueue(item = NULL); delete(item = NULL);

Tip /: test your test program

e don’t just run it against your queue implementation
* take your queue implementation and break it in various ways
e see if your test program notices

Tip 8 (advanced): be systematic
(no need to worry about corner cases)

* Define a set of basic operations you might want to use
* enq(1), eng(2), enq(NULL), deqg(pitem == NULL), deg(pitem != NULL), ins(1),
ins(2), ins(NULL), len(), del(1), del(2), del(NULL), len() iterate()
 Systematically check all sequences of operations
* all sequences of length 1
e all sequences of length 2
* all sequences of length 3

* With 13 basic operations, there are 13° (approx. 5 million) sequences
of length 6

* likely to trigger any bug

Checking a sequence of operations

* How do you know a sequence worked correctly?
* Check against specification! #define MAX QUEUE SIZE 100

* But what if spec is written in English? typedef struct queue {
void *buffer [MAX QUEUE SIZE];

o . | unsigned in, out;
Translate spec into C! } *queue t:
queue_t gold new() {
struct queue *q = calloc(l, sizeof(*q));
q->in = g->out = MAX_QUEUE_SIZE / 2;
return q;

}

int gold enqueue(queue_t q, void* item) {
assert(g->out <= g->in);
assert(g->in < MAX_QUEUE_SIZE);
g->buffer[g->in++] = item;
return 0;

Today

* P1 due
* Testing
* Threading library

e Have a nice break!

