
P2: Cooperative Thread
Yu-Ju Huang

Robbert van Renesse

1

Implement the following interface:

void thread_init();
• initialize the user-level threading module (process becomes a thread)

void thread_create(void (*f)(void *arg), void *arg, unsigned int stack_size);
• create another thread that executes f(arg)

void thread_yield();
• yield to another thread (thread scheduling is non-preemptive)

void thread_exit();
• thread terminates and yields to another thread or terminates entire process

2

Example usage

3

You’ll need to understand stacks *really well*

4

Review: stack (aka call stack)

5

int main(argc, argv){
…
f(3.14)
…

}

int f(x){
…
g();
…

}

int g(y){
…

}

stack frame for
main()

PC/IP

SP

FP

Review: stack (aka call stack)

6

int main(argc, argv){
…
f(3.14)
…

}

int f(x){
…
g();
…

}

int g(y){
…

}

stack frame for
main()

stack frame for f()

PC/IP

SP

FP

Review: stack (aka call stack)

7

int main(argc, argv){
…
f(3.14)
…

}

int f(x){
…
g();
…

}

int g(y){
…

}

stack frame for
main()

stack frame for f()

SP

arguments (3.14)

return address

local variables

saved registers

saved FP (main)

scratch space

PC/IP

FP

Review: stack (aka call stack)

8

int main(argc, argv){
…
f(3.14)
…

}

int f(x){
…
g();
…

}

int g(y){
…

}

stack frame for
main()

stack frame for f()

stack frame for g()

PC/IP

SP

FP

arguments (3.14)

return address

local variables

saved registers

saved FP (main)

scratch space

Review: stack (aka call stack)

9

int main(argc, argv){
…
f(3.14)
…

}

int f(x){
…
g();
…

}

int g(y){
…

}

stack frame for
main()

stack frame for f()

PC/IP

SP

FP

arguments (3.14)

return address

local variables

saved registers

saved FP (main)

scratch space

Review: stack (aka call stack)

10

int main(argc, argv){
…
f(3.14)
…

}

int f(x){
…
g();
…

}

int g(y){
…

}

stack frame for
main()PC/IP

SP

FP

Each thread has its own stack!!

11

Each thread has its own stack!!
”process stack”

thread 1 stack

thread 2 stack

12

Each thread has its own stack!!
”process stack”

thread 1 stack

thread 2 stack

13

•And its own PC (aka IP), SP, FP,
general purpose registers

Each thread has its own stack!!
”process stack”

main’s frame

thread_create’s

frame

thread 1 stack

entry1’s frame

thread 2 stack

entry2’s frame

g’s frame
14

•And its own PC (aka IP), SP, FP,
general purpose registers
•And stack frames

void entry1(void* args) { ... }

void entry2(void* args) { g(); }

void g() { ... }

int main() {
thread_init();
thread_create(entry1, ...);
thread_create(entry2, ...);
...

}

•And the process has only one stack

We need some magic…

(where’s the thread?)

But we have only one CPU, one core

15

We run one thread at a time

16

We run one thread at a time

Scheduling State of a Thread

• Running
• currently running

• Runnable (aka Ready)
• TCB on the run queue (aka ready queue)

• Terminated
• TCB marked as having terminated

17

•and save the state of the other threads in a secret
location
•The state of a thread (aka context) consists of
• its registers (including PC, SP, and FP)
• its stack
• possibly more stuff (scheduling state)

We run one thread at a time

18

•Context=
• memory address space +
• stack +
• stack pointer +
• instruction pointer or (program counter)

•At any moment, a CPU is in the context of some process

Context

19

Keynote stackKeynote code

Content 1st byte …… …… …… 2^32th byte

Address 0x0000 0000 …… …… …… 0xFFFF FFFF

code & stack of both zoom and Keynote in
memory

zoom codezoom stack

zoom codezoom stack Keynote stackKeynote code

Content 1st byte …… …… …… 2^32th byte

Address 0x0000 0000 …… …… …… 0xFFFF FFFF

CPU

Stack pointer register

Instruction pointer register

Keynote stackKeynote code

Content 1st byte …… …… …… 2^32th byte

Address 0x0000 0000 …… …… …… 0xFFFF FFFF

CPU

Stack pointer register

Instruction pointer register

CPU is in
the context
of zoom

zoom codezoom stack

Keynote stackKeynote code

Content 1st byte …… …… …… 2^32th byte

Address 0x0000 0000 …… …… …… 0xFFFF FFFF

CPU

Stack pointer register

Instruction pointer register

CPU is in
the context
of Keynote

zoom codezoom stack

OS stackOS code

Content 1st byte …… …… …… 2^32th byte

Address 0x0000 0000 …… …… …… 0xFFFF FFFF

Operating system is a program

zoom codezoom stack

OS stackOS code

Content 1st byte …… …… …… 2^32th byte

Address 0x0000 0000 …… …… …… 0xFFFF FFFF

CPU

Stack pointer register

Instruction pointer register

zoom wants
to use
network,
microphone,
speaker, etc.

zoom codezoom stack

OS stackOS code

Content 1st byte …… …… …… 2^32th byte

Address 0x0000 0000 …… …… …… 0xFFFF FFFF

CPU

Stack pointer register

Instruction pointer register

OS manages the
hardwares for
zoom

zoom codezoom stack

•When a thread exits (thread_exit) or yields (thread_yield)
another thread, if any, gets to run
• If a thread yields, we need to save its context
•We need to be able to restore another context

Context Switching

27

Where to store the context of a thread?

• Convenient to push a thread’s registers onto the stack
• but you can’t use the stack to find stack pointer…

• Keep the stack pointer in a Thread Control Block
• one TCB per thread

28

Thread Control Block
(initial state)

SP

BASE

29

Thread Control Block
entry2’s frame

g’s frameSP

BASE saved ALL registers

30

void entry1(void* args) { ... }

void entry2(void* args) { g(); }

void g() { thread_yield(); }

int main() {
thread_init();
thread_create(entry1, ...); // Thread 1
thread_create(entry2, ...); // Thread 2
...

}

Thread Control Block

SP

BASE

entry2’s frame

g’s frame

saved ALL registers

31

void entry1(void* args) { ... }

void entry2(void* args) { g(); }

void g() { thread_yield(); }

int main() {
thread_init();
thread_create(entry1, ...);
thread_create(entry2, ...);
...

}

”process stack”

main’s frame

thread_create’s
frame

thread 1 stack

entry1’s frame

thread 2 stack

entry2’s frame

g’s frame

Data Structures

• Thread

• Queue

32

Data Structures

• Thread
• Function
• Arguments
• State
• Stack memory
• Stack pointer

• Queue
• RUNNABLE Threads

33

36

ctx_switch:
addi sp,sp,-128
SAVE_ALL_REGISTERS
sw sp,0(a0)
mv sp,a1
RESTORE_ALL_REGISTERS
addi sp,sp,128
ret

.macro SAVE_ALL_REGISTERS
sw ra, 0(sp)
sw t0, 4(sp)
sw t1, 8(sp)
……

sw s10, 104(sp)
sw s11, 108(sp)
sw gp, 112(sp)
sw tp, 116(sp)
sw sp, 120(sp)

.endm

.macro RESTORE_ALL_REGISTERS
lw ra, 0(sp)
lw t0, 4(sp)
lw t1, 8(sp)
……

lw s10, 104(sp)
lw s11, 108(sp)
lw gp, 112(sp)
lw tp, 116(sp)
lw sp, 120(sp)

.endm

void thread_yield(){
……
next = runQueue.pop();
next->state = RUNNING;
ctx_switch(¤t->sp, next->sp);
……

}

37

ctx_switch:
addi sp,sp,-128
SAVE_ALL_REGISTERS
sw sp,0(a0)
mv sp,a1
RESTORE_ALL_REGISTERS
addi sp,sp,128
ret

.macro SAVE_ALL_REGISTERS
sw ra, 0(sp)
sw t0, 4(sp)
sw t1, 8(sp)
……

sw s10, 104(sp)
sw s11, 108(sp)
sw gp, 112(sp)
sw tp, 116(sp)
sw sp, 120(sp)

.endm

.macro RESTORE_ALL_REGISTERS
lw ra, 0(sp)
lw t0, 4(sp)
lw t1, 8(sp)
……

lw s10, 104(sp)
lw s11, 108(sp)
lw gp, 112(sp)
lw tp, 116(sp)
lw sp, 120(sp)

.endm

void thread_yield(){
……
next = runQueue.pop();
next->state = RUNNING;
ctx_switch(¤t->sp, next->sp);
……

}sp: stack pointer
RISC-V Calling Convention:
• a0: First argument
• a1: Second argument

38

.macro SAVE_ALL_REGISTERS
sw ra, 0(sp)
sw t0, 4(sp)
sw t1, 8(sp)
……

sw s10, 104(sp)
sw s11, 108(sp)
sw gp, 112(sp)
sw tp, 116(sp)
sw sp, 120(sp)

.endm

.macro RESTORE_ALL_REGISTERS
lw ra, 0(sp)
lw t0, 4(sp)
lw t1, 8(sp)
……

lw s10, 104(sp)
lw s11, 108(sp)
lw gp, 112(sp)
lw tp, 116(sp)
lw sp, 120(sp)

.endm

void thread_create(){
……
current->state = RUNNABLE;
runQueue.add(current);
next = CREATE_NEW_TBC();
ctx_start(¤t->sp, next’s top_of_stack);
……

}

Void ctx_entry() { … }

ctx_start:
addi sp,sp,-128
SAVE_ALL_REGISTERS
sw sp,0(a0)
mv sp,a1
call ctx_entry

thread_init()

• Initializes thread package
• Maintains run queue and current thread
• Allocates a TCB, but *not* a stack
• because process already has one in use

• Set TCB->base to NULL to mark no stack has been allocated
• Initial run queue is empty
• Current thread points to allocated TCB

39

thread_create(f, arg, stack_size)

• Create a new thread
• Allocates a TCB and a stack (of the given size)
• set TCB->base to “bottom”, and TCB->sp to “top”

• May or may not immediately switch to the new thread
• I think it’s easier if you switch immediately

40

thread_yield()

• See if the run queue is empty
• if so, we’re done

• Get next TCB of the run queue
• Put current TCB on the run queue
• Switch contexts
• Save registers on the stack
• Save sp in current TCB
• Restore sp of next TCB
• Restore registers from the stack

41

thread_exit()

• See if the run queue is empty
• if so, exit from the process using exit(0)

• Mark TERMINATED in TCB
• Get next TCB of the run queue
• Switch contexts
• Save registers on the stack
• Save sp in current TCB
• Restore sp of next TCB
• Restore registers from the stack

• Next thread cleans up last thread

42

Today

• Threading library
• P0 (Queue) due
• P1 (HelloWorld) due next week

• P2 (Thread) release, due in three weeks (Feb 28th)

43

