P2: Cooperative Thread

Yu-Ju Huang
Robbert van Renesse

Implement the following interface:

void thread _init();
* initialize the user-level threading module (process becomes a thread)

void thread create(void (*f)(void *arg), void *arg, unsigned int stack_size);
e create another thread that executes f(arg)

void thread_yield();

* vield to another thread (thread scheduling is non-preemptive)

void thread_exit();
* thread terminates and yields to another thread or terminates entire process

Example usage

static void test_code (void *xarqg) {
int 1i;

for (1 = 0; 1 < 10; i++) {
printf ("%s here: %d\n", arg, 1i);
thread_yield();

}

printf ("$s done\n", arg);

int main(int argc, char *xxargv) {
thread_init () ;
thread_create (test_code, "thread 1", 16 x 1024);
thread_create (test_code, "thread 2", 16 x 1024);
test_code ("main thread");
thread_exit () ;
return 0;

You'll need to understand stacks *really well*

Review: stack (aka call stack)

int main(arge, argv){

FP
PC/IP —> £05.14)
SP
}
int f(x){
é.();
|

int (¥ {

stack frame for
main()

Review: stack (aka call stack)

int main(arge, argv){

£(3.14)

FP
}
Sp
int f(x){
PC/IP —> -
g0);
|

int (¥ {

_

stack frame for
main()

stack frame for f()

>

Review: stack (aka call stack)

int main(arge, argv){ t
/

stack frame for
main()

stack frame for f()

f{s.%z oy
FP
}
SP
int f(x){
PC/IP —> =
g0:;
|

int (¥ {

arguments (3.14)

return address

saved FP (main)

local variables

saved registers

scratch space

Review: stack (aka call stack)

arguments (3.14)

return address

saved FP (main)

local variables

saved registers

scratch space

int main(arge, argv){ t k\
’ \
y
/ stack frame for
f<5%2 - ¥ main() \
N
) stack frame for f() »
. FP
int f(x){ stack frame for g()
g0; o
}
int g(y){
... < PC/IP

Review: stack (aka call stack)

int main(arge, argv){ t
/

stack frame for
main()

stack frame for f()

f(3.14) ,’
FP
}
Sp
int f(x){
PC/IP —> g0;
}

int (¥ {

arguments (3.14)

return address

saved FP (main)

local variables

saved registers

scratch space

Review: stack (aka call stack)

int main(arge, argv){

FP
PC/IP —> .f.(.5.14) .
)
int f(x){
é.();
}

int (¥ {
}

stack frame for
main()

Fach thread has its own stack!!

Fach thread has its own stack!!

"process stack”

¥

thread 1 stack

¥

thread 2 stack

¥

Fach thread has its own stack!!

* And its own PC (aka IP), SP, FP,
general purpose registers

"process stack”

thread 1 stack

\ 4

thread 2 stack

¥

Fach thread has its own stack!!

"process stack”

* And its own PC (aka IP), SP, FP, main's frame

general purpose registers thread_create’s

frame

e And stack frames

void entryl(void* args) {... }

thread 1 stack

void entry2(void* args) { g(); } entryl’s frame

void g(){ ... }

thread 2 stack

int main() {
thread_init();
thread_create(entryl, ...);
thread_create(entry2, ...);

g’s frame

But we have only one CPU, one core

* And the process has only one stack
We need some magic...

(where’s the thread?)

15

We run one thread at a time

We run one thread at a time

Scheduling State of a Thread

* Running
e currently running

 Runnable (aka Ready)
* TCB on the run queue (aka ready queue)

* Terminated
* TCB marked as having terminated

17

We run one thread at a time

e and save the state of the other threads in a secret
location

* The state of a thread (aka context) consists of
* its registers (including PC, SP, and FP)
* jts stack
e possibly more stuff (scheduling state)

18

Context

e Context=

* memory address space +

e stack +

* stack pointer +

e instruction pointer or (program counter)

* At any moment, a CPU is in the context of some process

19

code & stack of both zoom and Keynote in
memory

1

200m

zoom stack zoom code Keynote code Keynote stack

Content 1stbyte ... | | 2732th byte

Address 0x0000 0000 f|occ.. e e OxFFFF FFFF

CPU

Stack pointer register

Instruction pointer register

zoom stack zoom code Keynote code Keynote stack
Content 1stbyte ... | | 2732th byte
Address 0x00000000 f|.e... eeer OxFFFF FFFF

CPU s In CPU

the context
of zoom

Stack pointer register

Instruction pointer register

zoom stack zoom code Keynote code Keynote stack

Content 1stbyte ... | | 2732th byte

Address 0x0000 0000 f|occ.. e e OxFFFF FFFF

CPU CPU Is In
the context
of Keynote

Stack pointer register

Instruction pointer register

zoom stack zoom code Keynote code Keynote stack

Content 1stbyte ... | | 2732th byte

Address 0x0000 0000 f|occ.. e e OxFFFF FFFF

Operating system iIs a program

L

200Mm
zoom stack zoom code OS code OS stack
Content 1stbyte ... e e 2/32th byte
Address 0Ox00000000 |eceee. e e, OxFFFF FFFF

Z00m wants
to use
network,
microphone

speaker, etc.

Stack pointer register

)

CPU

Instruction pointer register

zoom stack

zoom code

OS code OS stack
Content 1stbyte ... | | 2732th byte
Address 0x0000 0000 f|occ.. e e OxFFFF FFFF

CPU

OS manages the
hardwares for

200m

Stack pointer register

Instruction pointer register

zoom stack zoom code 0S code OS stack

Content 1stbyte ... | | 2732th byte

Address 0x0000 0000 f|occ.. e e OxFFFF FFFF

Context Switching

* When a thread exits (thread exit) or yields (thread vyield)
another thread, if any, gets to run

*If a thread yields, we need to save its context
* We need to be able to restore another context

27

Where to store the context of a thread?

* Convenient to push a thread’s registers onto the stack
* but you can’t use the stack to find stack pointer...

* Keep the stack pointer in a Thread Control Block
* one TCB per thread

Thread Control Block
(initial state)

SP

BASE

29

Thread Control Block

void entryl(void* args) { ... }
void entry2(void™* args) { g(); }

void g() { thread_yield(); }

int main() {
thread_init();
thread_create(entryl, ...); // Thread 1
thread_create(entry2, ...); // Thread 2

entry2’s frame

g’s frame

saved ALL registers

30

Thread Control Block

void entryl(void* args) { ... }
void entry2(void* args) { g(); }
void g() { thread_yield(); }

int main() {
thread_init();
thread_create(entryl, ...);
thread_create(entry2, ...);

entry2’s frame

g’s frame

”process stack”

thread_create’s
frame

saved ALL registers

thread 1 stack

entryl’s frame

thread 2 stack

g’s frame

31

Data Structures

* Thread

e Queue

Data Structures

* Thread
* Function
* Arguments
* State
e Stack memory
 Stack pointer

* Queue
e RUNNABLE Threads

ctx_switch void thread_yield(){
addi sp,sp,-128 |

SAVE _ALL REGISTERS next = runQueue.pop();
SW Sp ao) next->state = RUNNING;
mv sp,al
RESTORE _ALL REGISTERS
addi sp,sp

ret

RESTORE _ALL REGISTERS

SAVE ALL_REGISTERS

SW ra sp lw ra, Sp
Sw to Sp lw tO Sp
sw tl sp lw tl sp

ctx_switch void thread_yield(){

addi sp,sp,-128 |
SAVE_ALL_REGISTERS next = runQueue.pop();
SW sp,0(ab) next->state = RUNNING;
mv sp,al

RESTORE ALL REGISTERS
add1 sp,sp : stack pointer
ret RISC-V Calling Convention:

: First argument
: Second argument

RESTORE _ALL REGISTERS

SAVE ALL_REGISTERS

SW ra sp lw ra, Sp
Sw to Sp lw tO Sp
sw tl sp lw tl sp

Cctx start
addi sp,sp
SAVE ALL REGISTERS

SW Sp a
mv sp,al
call ctx _entry

SAVE _ALL REGISTERS

ra Ssp
toO Sp
tl Sp

s10

void thread_create(){

current->state = RUNNABLE;
runQueue.add(current);
next = CREATE_NEW_TBC();

RESTORE ALL REGISTERS
ra, sp
to Sp
tl Sp

thread init()

* Initializes thread package
* Maintains run queue and current thread

* Allocates a TCB, but *not™ a stack
* because process already has one in use

e Set TCB->base to NULL to mark no stack has been allocated
* Initial run queue is empty
* Current thread points to allocated TCB

thread create(f, arg, stack size)

 Create a new thread

* Allocates a TCB and a stack (of the given size)
* set TCB->base to “bottom”, and TCB->sp to “top”

* May or may not immediately switch to the new thread
* | think it’s easier if you switch immediately

thread vyield()

 See if the run queue is empty
 if so, we're done

* Get next TCB of the run queue
* Put current TCB on the run queue

* Switch contexts
» Save registers on the stack
* Save sp in current TCB
* Restore sp of next TCB
* Restore registers from the stack

thread exit()

 See if the run queue is empty
* if so, exit from the process using exit(0)

* Mark TERMINATED in TCB
* Get next TCB of the run queue

* Switch contexts
» Save registers on the stack
* Save sp in current TCB
* Restore sp of next TCB
* Restore registers from the stack

* Next thread cleans up last thread

Today

* Threading library
* PO (Queue) due
* P1 (HelloWorld) due next week

* P2 (Thread) release, due in three weeks (Feb 28th)

