Memory and HelloWorld

Yu-Ju Huang
Slides adapted from Yunhao Zhang

Memory

content address
: Ox01
* Memory is an array of bytes = O"Oz
X
* An index into this array is called an "address o | oo
* Content and Address
- P Memory

A https//www.1 23rf.com/

Memory address space

°* content and address

* e.d., 32bit address space can represent up to 2432 bytes

Content 1st byte 2nd byte 3rdbyte ... 27\32th byte

Address 0x0000 0000 O0x0000 0001 0x0000 0002 OxFFFF FFFF

int val = 0x19950128; // a global variable in C

// compiller decides where to put val 1n memory
// say the compiler decides to put val at

Content Ox 28 Ox 01 Ox 95 ox19 ...
val

Address 0x0006 0001 0x0006 0002 0Ox0006 0003

1nt val = 0x19950128;

int* val_ptr; // another global variable

// say val_ptr 1s put at
val_ptr = &val; // &val=0x0006_0000

Content Ox 28 Ox O1 Ox 95 Ox 19
val

Address 0x0006 0000 0x0006 0001 0x0006 0002 0x0006 0003

T

Content 0x 00 0x 00 0x 06 0x 00

val_ptr
Address 0x000C 0001 0x000C 0002 0x000C 0003

1nt val = 0x19950128;
int* val_ptr = &val;

int** val_ptr_ptr = &val_ptr; // a third variable
// say val_ptr_ptr 1s put at

Content Ox 28 Ox 01 Ox 95 Ox 19

val
Address 0Ox0006 0000 0x0006 0001 Ox0006 0002 0Ox0006 0003

T

Content 0x 00 0x 00 0x 06 0x00

val_ptr
Address Ox000C 0000 0Ox000C 0001 Ox000C 0002 O0Ox000C 0003
Content Ox 00 Ox 00 Ox 0C oxopo ...

val_ptr_ptr

Address 0x000C 0001 0x000C 0002 0x000C 0003

1nt val = 0x19950128;
int* val_ptr = &val;
int** val_ptr_ptr = &val_ptr;

void func_a() { val = 0x1234abcd; }

Content
val

Address

Content

val_ptr
Address

Content

val_ptr_ptr
Address

Ox cd

0x0006 0000

Ox ab

0x0006 0001

Ox 34

0x0006 0002

Ox 12

0x0006 0003

T

Ox 00

0x000C 0000

Ox 00

0x000C 0001

Ox 06

0x000C 0002

0x 00

0x000C 0003

T

Ox 00

0xO000E 0000

Ox 00

0x000C 0001

Ox 0C

0x000C 0002

Ox 00

0x000C 0003

Write these
4 bytes

1nt val = 0x19950128;
int* val_ptr = &val;
int** val_ptr_ptr = &val_ptr;

void func_a() { *val_ptr = 0x1234abcd; }

Content
val

Address

Content

val_ptr
Address

Content

val_ptr_ptr
Address

Ox cd

0x0006 0000

Ox ab

0x0006 0001

Ox 34

0x0006 0002

Ox 12

0x0006 0003

T

Ox 00

0x000C 0000

Ox 00

0x000C 0001

Ox 06

0x000C 0002

0x 00

0x000C 0003

T

Ox 00

0xO000E 0000

Ox 00

0x000C 0001

Ox 0C

0x000C 0002

Ox 00

0x000C 0003

Then, write
these 4 bytes

First, read
these 4 bytes

1nt val = 0x19950128;
int* val_ptr = &val;
int** val_ptr_ptr = &val_ptr;

void func_a() { **val_ptr_ptr = 0x1234abcd; }

Content
val

Address

Content

val_ptr
Address

Content

val_ptr_ptr
Address

Ox cd

0x0006 0000

Ox ab

0x0006 0001

Ox 34

0x0006 0002

Ox 12

0x0006 0003

T

Ox 00

0x000C 0000

Ox 00

0x000C 0001

Ox 06

0x000C 0002

0x 00

0x000C 0003

T

Ox 00

0xO000E 0000

Ox 00

0x000C 0001

Ox 0C

0x000C 0002

Ox 00

0x000C 0003

Lastly, write
these 4 bytes

Then, read
these 4 bytes

First, read
these 4 bytes

More types for variables

sizeof(Type) sizeof(Type)
(32bit CPU) (64bit CPU)

Type sizeof(Type) Type

char char* 4 8
Tals Int* 4 8

long long long long* 4 38

float float* 4 8

cannot define
variable of void type

void void* 4 3

Type casting

1nt val = 0x19955343;
int* val_ptr = &val;
char* char_ptr = (char*) val_ptr

char cl = *char_ptr; // 0x43-> ‘C°

char c2 = *(char_ptr+l1); // 0x53-> ‘S’
Content Ox 43 0x 53 0x 95 0x19 ... Then, read
Address 0x0006 0000 0x0006 0001 0x0006 0002 0x0006 0003 ... 1 byte here
Content 0x 00 0x 00 Ox 06 0x00 ... First, read
Address 0x000C 0000 0x000C 0001 0x000C 0002 0x000C 0003 ... these 4 bytes
Content OX A3 LaStIy, Write

Address OX000F 0000 wooo. 1 byte here

Why void pointer?

char i1tem@ = ‘a’
1nt 1teml = Ox 1995@128
float 1temZ2 = 3.1

// It’s up to the user of the

gueue_t g = queue_new(); // queue to decide whether
// the 1tem 1s char, i1nt or
// queue 1S generic // other types

gueue_engqueue(q, &1temd);
gueue_enqueue(g, &iteml);
gueue_enqueue(g, &iteml);

char* 1tem3;
1nt* 1tem4;

char 1tem@ = ‘a’
)4 1995@128 float* 1tem5;
= 3.1

1nt 1teml =
float 1tem?
gueue_dequeue(q, &i1tem3);
queue_t g = queue_new(); gueue_dequeue(q, &i1tem4);
gueue_dequeue(q, &irtem5);
// queue 1S generic

gueue_enqueue(g, &i1temd); // NOW
gueue_enqueue(q, &iteml); // 1tem3 == &1temd
gueue_enqueue(g, &i1teml); // 1tem4 == &iteml

// 1tem5 == &1temZ

Why pointer of pointer?

char* 1tem3;
int* 1tem4;
float* 1tem5; // queue_dequeue needs to

// modify i1tem3, so 1t takes
gueue_dequeue(g, &i1tem3); // the address of 1tem3, namely
gueue_dequeue(g, &i1tem4); // &l1tem3, as parameter

queue_dequeue(qg, &1tem5);
// and &i1tem3 1s a pointer to

// 1tem3 == &1tem0O // a polnter with type void**
// 1tem4 == &iteml
// 1tem5 == &1tem’

1nt queue_dequeue(queue_t (g,
void** pitem){
égaglsingVGP}g?le pitem = .. // modifies the local
’ // variable pitem

volid test() {
char* 1tem3;
gqueue_enqueue(g, &1temd);
gueue_dequeue(g, &i1tem3);
// 1tem3 == &1temd

¥

*pitem = .. // modifies the 1tem3
// variable 1n test()

**pitem = .. // modifies 777
// only one above 1s needed

¥

malloc/free

* Allocate memory on-demand
* Allocate memory when the size is determined during runtime
* It X allocates memory, X frees it.
* Queue implementation allocates memory, Queue needs to free it.

* Queue test allocates memory, test needs to free it.

Let’s put it all together

HelloWorld

char* msg = "Hello, World!\n\r"
| B 15
/* Uncomment this line of code
* when implementing formatted output
*/
/*
printf("%d is a number\n", 1234);
printf("%s is a string\n", "abcd");
printf("%s-%d i1s awesome!\n", "egos", 2000);

printf("%c is character $\n", '$');

printf("%c is character 0\n", (char)48);

printf("%x i1s integer 1234 1in hexadecimal\n", 1234);

printf("%u is the maximum of unsigned int\n", (unsigned 1nt)OXFFFFFFFF);
printf("%p i1s the hexadecimal address of the hello-world string\n", msg);
printf("%lu is the maximum of unsigned long long\n", OXFFFFFFFFFFFFFFFFUL) ;
*/

return 0

Prolog/Epilog

int main() {

charx msg = "Hello, World!\n\r";

terminal_write(msg, 15);

return 0;
int main(arge, argv) {

. 563.14) ~tack frzf\me tor //I arguments (3.14) |
80000078 <main>: main() | return address |
main():) | .
80000078: fe010113 addi sp,sp,-32 stack frame for f{) |._saved frame point_|
8000007c: 00112e23 sw ra,28(sp) int f(x){ | local variables |
80000080: 00812c23 sw s0,24(sp) g() —> stack frame for g() | saved registers |
80000084 02010413 add1 s@,sp,32 - ’ | scratch space |
80000088 800007b7 lui a5,0x80000) —>
3000008c: Ob878793 add1l ab,a5,184 # 800000b8 <main+0x40>
80000090 fefd2623 sw a5,-20(s0) int (y){
80000094: 00700593 li a1,15 e S
80000098 fecd42503 lw a0,-20(s0) }
8000009c: f75ff0ef jal 80000010 <terminal write>
800000a0: 00000793

800000a4:
800000a8:
800000ac:
800000b0:
800000b4:

00078513
01c12083
01812403
02010113
000038067

1 a5,0
al,ab

oading constant string

int main() {

charx msg = "Hello, World!\n\r";

terminal_write(msg, 15);

return 0;

80000078 <maln>:

main():

80000078
8000007c:
80000080
80000084 :
80000088 :
8000008c:
80000090 :
80000094
80000098
8000009c:
800000a0:
800000a4:
800000a8:
800000ac:
80000000
800000b4:

fe010113
00112e23
00812c23
02010413
800007b7
0b878793
fef42623
00100593
fec42503
f75ff0ef
00000793
00078513
01c12083
01812403
02010113
00008067

add1i SD,SP,=32

sw ra,28(sp)

sw s0,24(sp)
add1 s@,sp, 32
lui a5,0x80000
add1l ab,ab5,184 # 800000b8 <main+0x40>
sw a5,-20(s0)
ST L 5
lw a0,-20(s0)
jal 80000010 <terminal write>
1 a5,0
al,ab
lw ra,28(sp)
lw s0,24(sp)
addi SHyShy s’

ret

Function call

int main() {

charx msg = "Hello, World!\n\r";

terminal_write(msg, 15);

return 0;

80000078 <maln>:

main():

80000078
8000007c:
80000080
80000084 :
80000088 :
8000008c:
80000090
80000094
80000098
8000009c:
800000a0 :
800000a4:
800000a8:
800000ac:
80000000
800000b4:

fe010113
00112e23
00812c23
02010413
800007b7
0b878793
fef42623
00100593
fec42503
f75ff0ef
00000793
00078513
01c12083
01812403
02010113
00008067

add1i SD,SP,=32

sw ra,28(sp)

sw s0,24(sp)
add1 s@,sp, 32
lui a5,0x80000
add1l ab,ab5,184 # 800000b8 <main+0x40>
sw a5,-20(s0)
= il s
a0,-20(s0)
80000010 <terminal write>
adb,0

terminal write

void terminal write(const char *str, int len) {

for (int i = 0: i < len: i++) {
x(charx) (0x10000000UL) = str[i];

Function return value

int main() {

charx msg = "Hello, World!\n\r";

terminal_write(msg, 15);

return 0;

80000078 <maln>:

main():

80000078
8000007c:
80000080
80000084 :
80000088 :
8000008c:
80000090
80000094
80000098 :
8000009c:
800000a0:
800000a4:
800000a8:
800000ac:
80000000
800000b4:

fe010113
00112e23
00812c23
02010413
800007b7
0b878793
fef42623
00100593
fec42503
f75ff0ef
00000793
00078513
01c12083
01812403
02010113
00008067

add1
Sw ra,?2
sw S0,2
add1
Llui a5,0
add1i

Sw ab,-

1 al,l

lw a0, -

jal 8000
1 a5,0
mv a0,a
w ra,?2
lw s0,2
add1

ret

sp,sp,=32

8(sp)

4(sp)

s@,sp,32

Xx80000

ab,ab5,184 # 800000b8 <main+0x40>
20(s0)

5

20(s0)

0010 <terminal write>

5
8(sp)
4(sp)

SDE Sy a2

Today

PO (Queue) due next week
P1 (HelloWorld) release today, due in two weeks

* Find your teammate!

Next week: user-level thread library

