
Memory and HelloWorld

Yu-Ju Huang
Slides adapted from Yunhao Zhang



Memory
• Memory is an array of bytes

• An index into this array is called an ”address”

• Content and Address

https://www.123rf.com/



Content 1st byte 2nd byte 3rd byte …… 2^32th byte

Address 0x0000 0000 0x0000 0001 0x0000 0002 …… 0xFFFF FFFF

Memory address space

• content and address

• e.g., 32bit address space can represent up to 2^32 bytes



Content 0x 28 0x 01 0x 95 0x 19 ……

Address 0x0006 0000 0x0006 0001 0x0006 0002 0x0006 0003 ……

int val = 0x19950128; // a global variable in C

// compiler decides where to put val in memory
// say the compiler decides to put val at 0x0006_0000

val



Content 0x 28 0x 01 0x 95 0x 19 ……

Address 0x0006 0000 0x0006 0001 0x0006 0002 0x0006 0003 ……

int val = 0x19950128;

int* val_ptr;     // another global variable
// say val_ptr is put at 0x000C_0000

val_ptr = &val; //  &val=0x0006_0000

Content 0x 00 0x 00 0x 06 0x 00 ……

Address 0x000C 0000 0x000C 0001 0x000C 0002 0x000C 0003 ……

val

val_ptr



Content 0x 28 0x 01 0x 95 0x 19 ……

Address 0x0006 0000 0x0006 0001 0x0006 0002 0x0006 0003 ……

int val = 0x19950128;
int* val_ptr = &val;

int** val_ptr_ptr = &val_ptr; // a third variable 
// say val_ptr_ptr is put at 0xE0000

Content 0x 00 0x 00 0x 06 0x 00 ……

Address 0x000C 0000 0x000C 0001 0x000C 0002 0x000C 0003 ……

Content 0x 00 0x 00 0x 0C 0x 00 ……

Address 0x000E 0000 0x000C 0001 0x000C 0002 0x000C 0003 ……

val_ptr

val_ptr_ptr

val



Content 0x cd 0x ab 0x 34 0x 12 ……

Address 0x0006 0000 0x0006 0001 0x0006 0002 0x0006 0003 ……

int val = 0x19950128;
int* val_ptr = &val; 
int** val_ptr_ptr = &val_ptr;

void func_a() { val = 0x1234abcd; }

Content 0x 00 0x 00 0x 06 0x 00 ……

Address 0x000C 0000 0x000C 0001 0x000C 0002 0x000C 0003 ……

Content 0x 00 0x 00 0x 0C 0x 00 ……

Address 0x000E 0000 0x000C 0001 0x000C 0002 0x000C 0003 ……

Write these 
4 bytes

val_ptr

val_ptr_ptr

val



Content 0x cd 0x ab 0x 34 0x 12 ……

Address 0x0006 0000 0x0006 0001 0x0006 0002 0x0006 0003 ……

int val = 0x19950128;
int* val_ptr = &val; 
int** val_ptr_ptr = &val_ptr;

void func_a() { *val_ptr = 0x1234abcd; }

Content 0x 00 0x 00 0x 06 0x 00 ……

Address 0x000C 0000 0x000C 0001 0x000C 0002 0x000C 0003 ……

Content 0x 00 0x 00 0x 0C 0x 00 ……

Address 0x000E 0000 0x000C 0001 0x000C 0002 0x000C 0003 ……

Then, write 
these 4 bytes

First, read 
these 4 bytes

val_ptr

val_ptr_ptr

val



Content 0x cd 0x ab 0x 34 0x 12 ……

Address 0x0006 0000 0x0006 0001 0x0006 0002 0x0006 0003 ……

int val = 0x19950128;
int* val_ptr = &val; 
int** val_ptr_ptr = &val_ptr;

void func_a() { **val_ptr_ptr = 0x1234abcd; }

Content 0x 00 0x 00 0x 06 0x 00 ……

Address 0x000C 0000 0x000C 0001 0x000C 0002 0x000C 0003 ……

Content 0x 00 0x 00 0x 0C 0x 00 ……

Address 0x000E 0000 0x000C 0001 0x000C 0002 0x000C 0003 ……

Lastly, write 
these 4 bytes

Then, read 
these 4 bytes

First, read 
these 4 bytes

val_ptr

val_ptr_ptr

val



More types for variables
Type sizeof(Type)

char 1

int 4

long long 8

float 4

void cannot define 
variable of void type

Type sizeof(Type)
(32bit CPU)

sizeof(Type)
(64bit CPU)

char* 4 8

int* 4 8

long long* 4 8

float* 4 8

void* 4 8



Content 0x 43 0x 53 0x 95 0x 19 ……

Address 0x0006 0000 0x0006 0001 0x0006 0002 0x0006 0003 ……

int val = 0x19955343;  
int* val_ptr = &val;
char* char_ptr = (char*) val_ptr
char c1 = *char_ptr;      // 0x43-> ‘C’
char c2 = *(char_ptr+1);  // 0x53-> ‘S’

Content 0x 00 0x 00 0x 06 0x 00 ……

Address 0x000C 0000 0x000C 0001 0x000C 0002 0x000C 0003 ……

Type casting

Content 0x 43 …… …… …… ……

Address 0x000F 0000 …… …… …… ……

First, read 
these 4 bytes

Then, read 
1 byte here

Lastly, write 
1 byte here



char item0 = ‘a’;
int item1 = 0x19950128;  
float item2 = 3.14;

queue_t q = queue_new();

// queue is generic
queue_enqueue(q, &item0);
queue_enqueue(q, &item1);
queue_enqueue(q, &item2);

Why void pointer?

// It’s up to the user of the
// queue to decide whether
// the item is char, int or
// other types



char item0 = ‘a’;
int item1 = 0x19950128;  
float item2 = 3.14;

queue_t q = queue_new();

// queue is generic
queue_enqueue(q, &item0);
queue_enqueue(q, &item1);
queue_enqueue(q, &item2);

char* item3;
int* item4;  
float* item5;

queue_dequeue(q, &item3);
queue_dequeue(q, &item4);
queue_dequeue(q, &item5);

// now
// item3 == &item0
// item4 == &item1
// item5 == &item2



char* item3;
int* item4;  
float* item5;

queue_dequeue(q, &item3);
queue_dequeue(q, &item4);
queue_dequeue(q, &item5);

// item3 == &item0
// item4 == &item1
// item5 == &item2

// queue_dequeue needs to 
// modify item3, so it takes
// the address of item3, namely
// &item3, as parameter

// and &item3 is a pointer to
// a pointer with type void**

Why pointer of pointer?



// Global variable
char item0 = ‘a’;

void test() { 
char* item3;
queue_enqueue(q, &item0);
queue_dequeue(q, &item3);
// item3 == &item0

}

int queue_dequeue(queue_t q, 
void** pitem){

pitem = … // modifies the local
// variable pitem

*pitem = … // modifies the item3
// variable in test()

**pitem = … // modifies ???

// only one above is needed

}



malloc/free

• Allocate memory on-demand

• Allocate memory when the size is determined during runtime

• If X allocates memory, X frees it.

• Queue implementation allocates memory, Queue needs to free it.

• Queue test allocates memory, test needs to free it.



Let’s put it all together



HelloWorld



Prolog/Epilog



Loading constant string



Function call



terminal_write



Function return value



Today

• P0 (Queue) due next week

• P1 (HelloWorld) release today, due in two weeks

• Find your teammate!

• Next week: user-level thread library


