F.A.T. File System

Robbert van Renesse
Yunhao Zhang

File System

* Mapping a file name to its content and
metadata

— A file may be stored in HDD, SSD, or RAMDISK
— Metadata like permission, owner, etc

user
space

EGOS Storage Architecture

appl

app2

/l//

dirsvr [bfs / blocksvr < syncsvr
kernel / /
space ramfile fs.dev page.dev

Block Store Abstraction

A block store consists of a collection of i-nodes
 Eachi-node is a finite sequence of blocks

* Simple interface:
— block_t block
* block of size BLOCK_SIZE
— getninodes() =2 integer
* returns the number of i-nodes on this block store
— getsize(inode number) = integer
* returns the number of of block on the given inode
— setsize(inode number, nblocks)
* set the number of blocks on the given inode

— release()
e give up reference to the block store

Block Store Abstraction, cont’d

— read(inode, block number) = block

* returns the contents of the given block number
— write(inode, block number, block)

* writes the block contents at the given block number
— sync(inode)

* make sure all blocks are persistent
— ifinode == -1, then all blocks on all inodes

Block Stores can be Layered!

Each layer presents a block_if abstraction

block_if

¢

CACHEDISK

¢

STATDISK

¢

FILEDISK

keeps a cache of recently
used blocks

keeps track of #reads and
#Hwrites for statistics

keeps blocks in a Posix file

11

Multiplexing

* Asingle block store can be “multiplexed”,
offering multiple virtual block stores

* One way is simply partitioning the underlying
block store into multiple disjoint sections
— Treedisk

— Partdisk

12

Partitioning

- ~- .~
.~ 2

- .~ 2
*

TREEDISK/PARTDISK

FAT file system

 Manage a disk using File Allocation Table

-

‘ CLOCKDISK ‘
< o <

TREEDISK/PARTDISK

-

FATDISK (1024)

*

14

FAT file system

* Given an inode, our goal is to read all content
(blocks) of that inode.

e All the information needed to locate the
blocks belonging to an inode is stored on disk.

15

Linked List Allocation

Each file is stored as linked list of blocks
— First word of each block points to next block
— Rest of disk block is file data

+ Space Utilization: no space lost to external fragmentation
+ Simple: only need to find 15t block of each file

— Performance: random access is slow

— Implementation: blocks mix meta-data and data

File A

physical block index 7 8 33 17 4 .

File Allocation Table (FAT)

late 70’s
Microsoft File Allocation Table []

e originally: MS-DQOS, early version of Windows
e today: still widely used (e.g., CD-ROMs, thumb drives,
camera cards)

File table:

e Linear map of all blocks on disk
* Each fileis a linked list of blocks

data

FAT File System

Data Blocks

e 1 entry per block 0 8 File o
1 :
e EOF for last block 2[0 e 12
. . 3 |17 File 9 Block 3
e O indicates free block .51
51 0
6| O
7| 0O
S s| O
What is missing? o 7571 T FieoBows
10 {22 wonef5 File 9 Block 1
11 [3 < File 9 Block 2
o[[emsson]
wl 0 |
16 [EOF]™ | Fiet2Biockt |
17 |EOF [« File 9 Block 4
18| 0
19| 0
20 0

FAT File System

Data Blocks

e 1 entry per block 0 8 File o
1 |
e EOF for last block 2 [0 File 12
. . 3 |17 f'.'.'.'.'.'.'.'.g...s File 9 Block 3
e 0 indicates free block ., o1
51 0
6| O
71 0
L 0 3
What IS mlSSIn%? _________ 2 10 Flleg BIOCkO
] A’-c-fll_e -I-e -v_e_l-“ i 10 [10 it eI E—
. . : 11 | 3 oo <l File 9 Block 2
i - start index of the file 1o T [FietzBlocko |
| - size : 13| 0 |
: : 14 0 |
s I 5| 0 |
At disk leve [0 [reizseaa |
. - freelist : 17 |[EOF |+ File 9 Block 4
L e : 18 0
e : 19 0
20 0

P6:FAT disk layout

» fatdisk offers multiple virtual block stores

 The underlying block store is partitioned into four
sections:

1. superblock
. at block #0

2. afixed number of i-node blocks

. start at block #1

the number is given in the superblock
3. the FAT table

the number of blocks is given in the superblock
4. the remaining blocks

. data blocks, free blocks

21

Fat Fat
Entry | Entry [

#1 #2

Super Block VBS Metadata * n FAT Table Data Blocks

Figure 2: Physical Disk Layout

* [Super Block] This is the first block on the physical disk. It stores some meta-
data such as the number of virtual block stores (i.e. n), the number of data blocks
(i.e. m), and information keeping track of unused data blocks (i.e., the free list).

* [VBS Metadata * n] This region is usually called the inode table, where each
inode stores the metadata of a virtual block store. Each inode contains a pair of
integers: the size of the VBS (in number of blocks) and the data block index of
the first data block in this VBS. For example, (5, 9) means that the VBS contains
5 blocks and the first block is stored in data block #9 of the ”Data Blocks™ region.

 [FAT Table] There are m FAT entries, corresponding to the m data blocks. Each
VBS is organized as a linked list of FAT entries, and each FAT entry contains
the next pointer of the linked list. In Figure 3, the size of VBS #1 is 5, stored in
data block #9, #5, #23, #2, #8. In this case, FAT entry #9 would contain integer
S, FAT entry #5 would contain integer 23, etc. FAT entry #8 would contain 0
marking the end of the linked list. One may also use -1 instead of 0.

e [Data Blocks] Data blocks store the actual data of each VBS. Some data blocks
hold valid data while others are unused and contain arbitrary content.

block number O 1 2 3 4 5 6 7 8 9

blocks; HEEEET RSN N NN
L J\) \ J \ J
I ! I
super inode FAT remaining blocks
block blocks blocks

23

Data structures

src/block/fatdisk.h
* struct fatdisk_superblock
 struct fatdisk_inode

e struct fatdisk fatentry
 struct fatdisk_inodeblock

 struct fatdisk_fatblock

24

Implement 4 functions

fatdisk_create(block_if below, unsigned int below_ino, unsigned int
ninodes);

— Use below->getsize(below_ino) to know the capacity of underlying disk.

— Initialize the FAT layout described before.

fatdisk_read(block_if this_bs, unsigned int ino, block_no offset,
block_t *block);

— Read content from (ino, offset)

fatdisk_write(block_if this_bs, unsigned int ino, block_no offset,
block_t *block);

— Write content to (ino, offset)

fatdisk_free_file(struct fatdisk_snapshot *snapshot, struct
fatdisk_state *fs);

— Free a file and return all its block back to freelist.

25

below _ino and ino are not the same!

v

‘ CLOCKDISK

v

‘ TREEDISK/PARTDISK

Vv

‘ FATDISK (1024)

\ 4
o oskpey

block number 0O 1 2 3 45 6 7 8 9

blocks:

| J\ J \ J | i
I I I

super inode FAT remaining blocks 26

block blocks blocks

Today

e P3, P5 due
* P6 release, due on May 12t

* Thanks for filling out the course evaluation!

27

