
F.A.T. File System

Robbert van Renesse
Yunhao Zhang

1

File System

• Mapping a file name to its content and
metadata
– A file may be stored in HDD, SSD, or RAMDISK
– Metadata like permission, owner, etc

2

EGOS Storage Architecture

4

dirsvr bfs blocksvr syncsvr

ramfile fs.dev page.dev

app2app1
user

space

kernel
space

Block Store Abstraction
• A block store consists of a collection of i-nodes
• Each i-node is a finite sequence of blocks
• Simple interface:

– block_t block
• block of size BLOCK_SIZE

– getninodes() à integer
• returns the number of i-nodes on this block store

– getsize(inode number) à integer
• returns the number of of block on the given inode

– setsize(inode number, nblocks)
• set the number of blocks on the given inode

– release()
• give up reference to the block store

7

Block Store Abstraction, cont’d

– read(inode, block number) à block
• returns the contents of the given block number

– write(inode, block number, block)
• writes the block contents at the given block number

– sync(inode)
• make sure all blocks are persistent

– if inode == -1, then all blocks on all inodes

8

Block Stores can be Layered!

Each layer presents a block_if abstraction

CACHEDISK

STATDISK

FILEDISK

block_if

keeps a cache of recently
used blocks

keeps track of #reads and
#writes for statistics

keeps blocks in a Posix file

11

Multiplexing

• A single block store can be “multiplexed”,
offering multiple virtual block stores

• One way is simply partitioning the underlying
block store into multiple disjoint sections
– Treedisk
– Partdisk

12

Partitioning

TREEDISK/PARTDISK

DISK (1024)

13

CLOCKDISK

FAT file system

• Manage a disk using File Allocation Table

14

TREEDISK/PARTDISK

DISK (1024)

CLOCKDISK

FATDISK (1024)

FAT file system

15

• Given an inode, our goal is to read all content
(blocks) of that inode.

• All the information needed to locate the
blocks belonging to an inode is stored on disk.

Each file is stored as linked list of blocks
– First word of each block points to next block
– Rest of disk block is file data

+ Space Utilization: no space lost to external fragmentation
+ Simple: only need to find 1st block of each file

– Performance: random access is slow
– Implementation: blocks mix meta-data and data

Linked List Allocation

17

File
block

0

next

File
block

1

next

File
block

2

next

File
block

3

next

File
block

4

next

File A

physical block index 7 8 33 17 4

Microsoft File Allocation Table
• originally: MS-DOS, early version of Windows
• today: still widely used (e.g., CD-ROMs, thumb drives,

camera cards)

File table:
• Linear map of all blocks on disk
• Each file is a linked list of blocks

File Allocation Table (FAT)

18

[late 70’s]

data

next

data

next

data

next

decoupled

physically

data

Data BlocksFAT

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

File 9 Block 3

File 9

File 12

File 12 Block 1
File 9 Block 4

File 9 Block 0
File 9 Block 1
File 9 Block 2
File 12 Block 0

FAT File System

19

• 1 entry per block
• EOF for last block
• 0 indicates free block

0

0

0

EOF
EOF

0
0
0

0
0
0

0

0

0
0

0
10

11

3

17

16

What is missing?

Data BlocksFAT

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

File 9 Block 3

File 9

File 12

File 12 Block 1
File 9 Block 4

File 9 Block 0
File 9 Block 1
File 9 Block 2
File 12 Block 0

FAT File System

20

• 1 entry per block
• EOF for last block
• 0 indicates free block

0

0

0

EOF
EOF

0
0
0

0
0
0

0

0

0
0

0
10

11

3

17

16

At file level
- start index of the file
- size

At disk level
- freelist
- size

What is missing?

P6:FAT disk layout
• fatdisk offers multiple virtual block stores
• The underlying block store is partitioned into four

sections:
1. superblock

• at block #0
2. a fixed number of i-node blocks

• start at block #1
• the number is given in the superblock

3. the FAT table
• the number of blocks is given in the superblock

4. the remaining blocks
• data blocks, free blocks

21

22

23

block number 0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

blocks:

remaining blocksinode
blocks

super
block

FAT
blocks

Data structures

src/block/fatdisk.h
• struct fatdisk_superblock
• struct fatdisk_inode
• struct fatdisk_fatentry
• struct fatdisk_inodeblock
• struct fatdisk_fatblock

24

Implement 4 functions
• fatdisk_create(block_if below, unsigned int below_ino, unsigned int

ninodes);
– Use below->getsize(below_ino) to know the capacity of underlying disk.
– Initialize the FAT layout described before.

• fatdisk_read(block_if this_bs, unsigned int ino, block_no offset,
block_t *block);
– Read content from (ino, offset)

• fatdisk_write(block_if this_bs, unsigned int ino, block_no offset,
block_t *block);
– Write content to (ino, offset)

• fatdisk_free_file(struct fatdisk_snapshot *snapshot, struct
fatdisk_state *fs);
– Free a file and return all its block back to freelist.

25

below_ino and ino are not the same!

26

TREEDISK/PARTDISK

DISK (1024)

CLOCKDISK

FATDISK (1024)

block number 0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

blocks:

remaining blocksinode
blocks

super
block

FAT
blocks

Today

• P3, P5 due
• P6 release, due on May 12th

• Thanks for filling out the course evaluation!

27

