
Memory Protections

Yu-Ju Huang
Slides adapted from Yunhao Zhang, Kevin A. Negy



P4

• Part1: Implement sleep system service

• Part2: memory protection

• Setup PMP regions

• Set user application to User mode

• Kill user applications for exceptions



mcause



Review: System Call
• A way for applications to request services from the OS.

• E.g., read/write disks, access NICs, inter-process 
communication (IPC)

• How

• Invoke OS kernel by ECALL
App1 App2 App3

Operating System

Disk NIC



Monolithic kernel vs Microkernel

https://ece-research.unm.edu/jimp/310/slides/linux_driver1.html

File 
Server

Cat 
program

Operating System

Disk NIC

Net
Server



apps/user/cat.c



Step1. File server waits for requests

grass/syscall.c

main()

Process #1

sys_recv()

apps/system/sys_file.c



Step2. Cat sends a request for file content

Process #2

library/servers/servers.c

Apps/user/cat.c main()

file_read()

sys_send()grass/syscall.c



Step3. Kernel handles the IPC
Process #1 (sys_file)

main()

sys_recv()

Process #2 (cat)

main()

file_read()

sys_send()

Grass kernel (grass/kernel.c)
Inter-process Communication (IPC) Send to FileServer:

Read from X file

Receive: 
Read from X file



Step4a. File server reads file from disk
Process #1

main()

Process #2

apps/system/cat.c main()

file_read()

sys_send()

Grass kernel (grass/kernel.c)

disk_read()

…
…



Step4b. Cat waits for the file content
Process #1

main()

Process #2

apps/system/cat.c main()

file_read()

sys_recv()

Grass kernel (grass/kernel.c)

disk_read()

…
…



Step5. File server returns the file content

main() apps/system/cat.c main()

file_read()

sys_recv()

sys_send()

Grass kernel (grass/kernel.c)
Inter-process Communication (IPC)

Process #1 (sys_file) Process #2 (cat)



• A high-level picture of system calls

• A concrete implementation of system calls

• P4: Implement sleep system calls



Data structures for system calls

library/syscall/syscall.h



sys_recv

library/syscall/syscall.c



Kernel system call handler



Handle system call (2)



File Server is unblocked

library/syscall/syscall.c



P4

• Part1: Implement sleep system service

• Part2: memory protection

• Setup PMP regions

• Set user application to User mode

• Kill user applications for exceptions



sleep system call
• sleep user API

• sys_send(PROC_PROCESS, SLEEP, NTICKS)

• In PROC_PROCESS

• grass->proc_sleep

• In kernel: proc_sleep

• Add sleep_time to struct process

• When the scheduler kicks in, check if the sleep time has elapsed and change the state to 
runnable.

• Using mtime_get()



Memory protection
• Machine mode can access all memory regions.

• OS specifies which regions can be accessed by user mode.

• In P4, you will specify 1 PMP regions for user mode

• PMP stands for Physical Memory Protection

• Read section 3.6 of the RISC-V reference manual



PMP entries
• Comprised of (at least) two parts:

• a PMP address (one of pmpaddr0 – pmpaddr63)

• a PMP configuration (one of pmpcfg0 - pmpcfg15)



PMP entries
• Comprised of (at least) two parts:

• a PMP address (one of pmpaddr0 - pmpaddr15)

• a PMP configuration (one of pmpcfg0 - pmpcfg15)

• Smallest PMP region you can protect is 4 bytes

• RISC-V32 has 34 bit physical address, 32 bit registers (bottom 
two bits not stored in PMP)



PMP entries
• Comprised of (at least) two parts:

• a PMP address (one of pmpaddr0 - pmpaddr15)
• a PMP configuration (one of pmpcfg0 - pmpcfg15)

• Smallest PMP region you can protect is 4 bytes
• RISC-V32 has 34 bit physical address, 32 bit registers (bottom 

two bits not stored in PMP)
• Different types of PMP configurations
• e.g. TOR, NA4, NAPOT



How to read RISC-V PMP figures?

Bit index (0 .. 31)

WARL: Write any value; Read legal value

RISC-V32 physical memory address is 34 bits; 
This register holds the first 32 bits [33 : 2].



• Goal: Set up a PMP region for the lowest 4 GB address space 
with WRX permission

TOR PMP example



• Goal: Set up a PMP region for the lowest 4 GB address space 
with WRX permission

• A TOR (top of range) entry in pmpaddr0 has special meaning

• Protect range 0x0-pmpaddr0

TOR PMP example



• Goal: Set up a PMP region for the lowest 4 GB address space 
with WRX permission

• A TOR (top of range) entry in pmpaddr0 has special meaning

• Protect range 0x0-pmpaddr0

• Convert physical address to PMP address

• 0x1_0000_0000 (4GB) >> 2 == 0x4000_0000

TOR PMP example



• Goal: Set up a PMP region for the lowest 4 GB address space 
with WRX permission

• A TOR (top of range) entry in pmpaddr0 has special meaning
• Protect range 0x0-pmpaddr0

• Convert physical address to PMP address
• 0x1_0000_0000 (4GB) >> 2 == 0x4000_0000

• Configuration: TOR, readable, writable, executable.
• cfg = 0b01111 = 0x0f

TOR PMP example

asm("csrw pmpaddr0, %0" : : "r" (0x40000000));
asm("csrw pmpcfg0, %0" : : "r" (0xF));



• Goal: Setup PMP NAPOT region 0x20400000 - 0x20800000 
with r/w/- permission

NAPOT PMP example



• Goal: Setup PMP NAPOT region 0x20400000 - 0x20800000 
with r/w/- permission

• Convert base physical address to PMP address

• 0x20400000 >> 2 == 0x08100000

NAPOT PMP example



• Goal: Setup PMP NAPOT region 0x20400000 - 0x20800000 
with r/w/- permission

• Convert base physical address to PMP address

• 0x20400000 >> 2 == 0x08100000

• Calculate the alignment

• 0x20800000 - 0x20400000 = 0x00400000 = 2^22
• 2^22 -> 0111_1111_1111_1111_1111

NAPOT PMP example



• Goal: Setup PMP NAPOT region 0x20400000 - 0x20800000 with 
r/w/- permission

• Convert base physical address to PMP address

• 0x20400000 >> 2 == 0x08100000
• Calculate the alignment

• 0x20800000 - 0x20400000 = 0x00400000 = 2^22
• 2^22 -> 0111_1111_1111_1111_1111 = 0x7ffff

• Calculate pmpaddr
• 0x08100000 | 0x7ffff = 0x0817ffff

NAPOT PMP example



• Goal: Setup PMP NAPOT region 0x20400000 - 0x20800000 with r/w/-
permission

• Convert base physical address to PMP address

• 0x20400000 >> 2 == 0x08100000

• Calculate the alignment

• 0x20800000 - 0x20400000 = 0x00400000 = 2^22• 2^22 -> 0111_1111_1111_1111_1111 = 0x7ffff
• Calculate pmpaddr• 0x08100000 | 0x7ffff = 0x0817ffff
• Configuration: NAPOT, readable, writable.• cfg = 0b11011 = 0x1b

NAPOT PMP example

asm("csrw pmpaddr1, %0" : : "r" (0x0817ffff));
asm("csrw pmpcfg0, %0" : : "r" (0x1b << 8));



Switching privilege level

35



Set user application to User mode

• In proc_yield, before switching backing to user application, set the 
mstatus.MPP

void proc_yield() {
….
FIND_NEXT
….
if (curr_pid >= GPID_USER_START) {

SET mstatus.MPP
}
….

}



Kill user applications for exceptions

if (curr_pid >= GPID_USER_START) {

// kill the process

}



Demo



Submission: git patches

• git format-patch BASE_COMMIT_NUMBER

• git am -3 XXX.patch



Today

• Memory protection

• P4

• Mid-term evaluation!

40


