P1: Implement a
Multi-Threading Package
(in user space)

Robbert van Renesse

Implement the following interface:

void thread _init();
* initialize the user-level threading module (process becomes a thread)

void thread create(void (*f)(void *arg), void *arg, unsigned int stack_size);
e create another thread that executes f(arg)

void thread_vyield();

* vield to another thread (thread scheduling is non-preemptive)

void thread_exit();
* thread terminates and yields to another thread or terminates entire process

Example usage

static void test_code (void xarqg) {
int 1i;

for (1 = 0; 1 < 10; i++) {
printf ("$s here: %d\n", arg, 1i);
thread_yield();

}

printf ("%$s done\n", arg);

int main(int argc, char *xxargv) {
thread_init () ;
thread_create (test_code, "thread 1", 16 x 1024);
thread create(test_code, "thread 2", 16 = 1024);
test_code ("main thread");
thread_exit () ;
return 0;

You'll need to understand stacks *really well*

Review: stack (aka call stack)

int main (argc,

JGIEAAN

£(3.14)

FP
SP

—

stack frame for
main()

>

Review: stack (aka call stack)

int main (argc,
argv) {

£(3.14)

stack frame for
main()

stack frame for f()

Review: stack (aka call

stack)

stack frame for
main()

stack frame for f()

é
\ . /
int main (argc, /
argv) {)
/
___¥
£(3€17)
FP —
J SP >

arguments (3.14)

return address

saved FP (main)

local variables

saved registers

scratch space

Review: stack (aka call

stack)

stack frame for
main()

stack frame for f()

é
. . /
int main (argc, /
argv) { //
/
R 4
£(371%)
}
FP >
int f£(x) {
X SP H
g();
}

stack frame for g()

arguments (3.14)

return address

saved FP (main)

local variables

saved registers

scratch space

Review: stack (aka call stack)

int main (argc,
argv) {

stack frame for
main()

stack frame for f()

arguments (3.14)

return address

saved FP (main)

local variables

saved registers

scratch space

Review: stack (aka call stack)

int main (argc,
argv) {

PC/IP —>f(3.14)

FP
SP

—

stack frame for
main()

>

Fach thread has its own stack!!

EFach thread has its own stack!!

“process stack”

4

thread 1 stack

¥

thread 2 stack

4

EFach thread has its own stack!!

“process stack”

* And its own PC (aka IP), SP, FP, "
general purpose registers thread L stack

thread 2 stack

4

But we have only one CPU, one core

* And the process has only one stack
We need some magic...

(where’s the thread?)

We run one thread at a time

e and save the state of the other threads in a secret
location

* The state of a thread (aka context) consists of
* its registers (including PC, SP, and FP)
* jts stack
e possibly more stuff (scheduling state)

Context Switching
* When a thread exits (thread_exit) or yields (thread _vyield)
another thread, if any, gets to run
*|If a thread yields, we need to save its context
* We need to be able to restore another context

Where to store the context of a thread?

e Convenient to push a thread’s registers onto the stack
* but you can’t save the stack pointer on the stack...

* Keep the stack pointer in a Thread Control Block
* one TCB per thread

Thread Control Block

stack frame

stack frame

SP

Thread Control Block
(initial state)

SP

BASE

Scheduling State of a Thread

* Running
e currently running

 Runnable (aka Ready)
* TCB on the run queue (aka ready queue)

* Terminated
* TCB on the zombie queue

thread init()

* Initializes thread package

* Maintains global variables:
* run queue, zombie queue, and current thread

* Initial run queue and zombie queues are empty

* Allocates a TCB, but *not™* a stack
* because process already has one in use

e Set TCB->base to NULL to mark no stack has been allocated
* Current thread points to allocated TCB

thread create(f, arg, stack size)

* Create a new thread

* Allocates a TCB and a stack (of the given size)
* set TCB->base to “bottom”, and TCB->sp to “top”

 May or may not immediately switch to the new thread
* | think it’s easier if you switch immediately

thread vield()

e See if the run queue is empty
* if so, we're done

* Get next TCB of the run queue

* Put current TCB on the run queue

e Switch contexts
e Save registers on the stack
* Save spin current TCB
e Restore sp of next TCB
e Restore registers from the stack
* Check to see if there are any threads on the zombie queue

thread exit()

* See if the run queue is empty
e if so, exit from the process using exit(0)

* Put TCB on zombie queue
* Get next TCB of the run queue

e Switch contexts
* As before

* Next thread cleans up last thread!

ctx switch(&old sp, new sp)

ctx_switch: // ip already pushed!
pushg %rbp
pushg %rbx USAGE:
pushg %r15
pushg %rl14

oushg %r13 struct tcb *current;

oushq %r12 struct queue run_queue, zombie_queue;
pushq %rl11l

pushg %r10 void thread_yield(){

pushq %r9 struct tcb *old = current;

hg %
pushq %r8 run_queue.add(OId);

current =scheduler();
popq %r8 if (current ==old) return;

[0) o
Eggg ;’:51’0 ctx_switch(&old->sp, current->sp)
(o}

popq %rll

popq %rl2 }
popq %rl3

popq %rl4

popg %rl5

popq Yrbx

popq %rbp

retq

while (zombie_queue is not empty) ...

Starting a new thread

ctx_start:
pushq
pushq
pushq
pushq
pushq
pushq
pushq
pushq
pushq
pushq

call

%rbp
%rbx
%r15
%rl4
%r13
%rl12
%rl11
%r10
%Tr9

%Tr8

*O%rdx

void ctx_entry(){
(*current->func)();
thread_exit();
// this location cannot be reached

void thread_create(func){
struct tcb *old = current;
runQueue.add(old);
current = malloc(sizeof(struct tcb));
current->func = func;
current->stack = malloc(...);
ctx_start(&old->sp,

while (zombie_queue is not empty) ...

26

Come to front if you need a partner

Synchronization Primitives

Semaphores

* We're not teaching general semaphores in CS4410 anymore

A semaphore is a kind of counter:
struct sema;
void sema_init(struct sema *sema, unsigned int count);
void sema_dec(struct sema *sema);
void sema_inc(struct sema *sema);
bool sema_release(struct sema *sema);

Semaphore interface

void sema_init(struct sema *sema, unsigned int count)

* Initialize the semaphore to the given counter
void sema_dec(struct sema *sema)

* Wait until sema > 0, then decrement semaphore
void sema_inc(struct sema *sema)

* Increment the semaphore

bool sema_release(struct sema *sema)

* Release the semaphore

Example usage: Producer/Consumer

bounded consumers

producers butter

B out
=)

D
= OO
D

Producers block Consumers block
when buffer is full when buffer is empty

Example usage: Producer/Consumer

#define NSLOTS 3

static struct sema s_empty, s_full, s_lock;
static unsigned int in, out;
static char #*slots[NSLOTS];

int main(int argc, char *xargv) {
thread init () ;
sema_1init (&s_lock, 1) ;
sema_1init (&s_full, 0);
sema_1init (&s_empty, NSLOTS);

thread_create (consumer, "consumer 1", 16 = 1024);
producer ("producer 1");

thread_exit () ;

Example usage: Producer/Consumer

static void producer (void xarg) {
for (;;)
// first make sure there’s an empty slot.
sema_dec (&s_emptLy) ;

// now add an entry to the gueue
sema_dec (&s_lock) ;

slots[in++] = arg;

1f (1in == NSLOTS) 1in = 0;
sema_1inc(&s_lock);

// finally, signal consumers
sema_1inc(&s_full);

Example usage: Producer/Consumer

static volid consumer (volid *arqg) {
unsigned 1nt 1;

for (i = 0; i < 5; i++) {
// first make sure there’s something in the buffer
sema_dec (&s_full) ;

// now grab an entry to the queue
sema_dec(&s_lock) ;

vold X = slots[out++];
printf("%s: got ’"%s’\n", arg, x);
1f (out == NSLOTS) out = 0;

sema_inc(&s_lock) ;

// finally, signal producers
sema_inc (&s_empty) ;

Semaphore implementation

e Associate a counter and a queue with each semaphore

* If thread tries to decrement a semaphore with a zero counter, put its
TCB on the semaphore queue

e otherwise decrement the counter

* If thread increments a semaphore with a non-empty queue, don’t
increment the counter but move one TCB from the semaphore’s
gueue to the ready queue

* otherwise increment the counter

On Testing

Tip 1: use assertions in your implementation
(and not in your test code)

* Pepper your code with assertions before testing
* think carefully about invariants
* check invariants as often as possible
e write code to check invariants

Quick aside on using assertions

 assert(P) --- executable comment

* Important: P should have no side effects
* so, don’t do assert(sema_release(s))

 assert statements should be no-ops and can be turned off

e use assert statements to check correctness, not to detect failures
* so, don’t do p = malloc(); assert(p != NULL)

* split conjunctions
e so, don’t do assert(P && Q) but do assert(P); assert(Q)

Tip 2: don’tignore warnings

* Compile with —g —Wall

e e.g., cc—g-Wall x.c
* Do *not™* submit code with outstanding warnings

* Do *not* get rid of warnings by hasty casting
e Be very careful and only cast if you know exactly what you’re doing

Tip 3: run small tests

 Don’t run very large tests (10s of operations or more)
e you are unlikely to find bugs that you can’t find with small tests
* it’s hard to figure out what went wrong
 tests may take a long time for no good reason

Tip 4: use valgrind

* Will immediately notify you if

* you are using uninitialized memory (e.g., from malloc())
* you are accessing illegal memory
e you are leaking memory

* It will give you lots of information about how it happened

e Easiest to install under Linux, so use a virtual machine or log into
CSUGIab Linux machines

Tip 5: only check things that are specified

 Carefully read the spec and design tests for each specified case

* Do not check things that are not specified
 sema_dec(NULL) has unspecified behavior---don’t test it

Tip 6: think carefully about corner cases

* be systematic

Tip 7: test your test program

e don’t just run it against your own implementation
* take your implementation and break it in various ways

 see if your test program notices

	Slide 1: P1: Implement a Multi-Threading Package (in user space)
	Slide 2: Implement the following interface:
	Slide 3: Example usage
	Slide 4: You’ll need to understand stacks *really well*
	Slide 5: Review: stack (aka call stack)
	Slide 6: Review: stack (aka call stack)
	Slide 7: Review: stack (aka call stack)
	Slide 8: Review: stack (aka call stack)
	Slide 9: Review: stack (aka call stack)
	Slide 10: Review: stack (aka call stack)
	Slide 11: Each thread has its own stack!!
	Slide 12: Each thread has its own stack!!
	Slide 13: Each thread has its own stack!!
	Slide 14: But we have only one CPU, one core
	Slide 15: We run one thread at a time
	Slide 16: Context Switching
	Slide 17: Where to store the context of a thread?
	Slide 18: Thread Control Block
	Slide 19: Thread Control Block (initial state)
	Slide 20: Scheduling State of a Thread
	Slide 21: thread_init()
	Slide 22: thread_create(f, arg, stack_size)
	Slide 23: thread_yield()
	Slide 24: thread_exit()
	Slide 25: ctx_switch(&old_sp, new_sp)
	Slide 26: Starting a new thread
	Slide 27: Come to front if you need a partner
	Slide 28: Synchronization Primitives
	Slide 29: Semaphores
	Slide 30: Semaphore interface
	Slide 31: Example usage: Producer/Consumer
	Slide 32: Example usage: Producer/Consumer
	Slide 33: Example usage: Producer/Consumer
	Slide 34: Example usage: Producer/Consumer
	Slide 35: Semaphore implementation
	Slide 36: On Testing
	Slide 37: Tip 1: use assertions in your implementation (and not in your test code)
	Slide 38: Quick aside on using assertions
	Slide 39: Tip 2: don’t ignore warnings
	Slide 40: Tip 3: run small tests
	Slide 41: Tip 4: use valgrind
	Slide 42: Tip 5: only check things that are specified
	Slide 43: Tip 6: think carefully about corner cases
	Slide 44: Tip 7: test your test program

