
P1: Implement a
Multi-Threading Package

(in user space)
Robbert van Renesse

Implement the following interface:

void thread_init();
• initialize the user-level threading module (process becomes a thread)

void thread_create(void (*f)(void *arg), void *arg, unsigned int stack_size);
• create another thread that executes f(arg)

void thread_yield();
• yield to another thread (thread scheduling is non-preemptive)

void thread_exit();
• thread terminates and yields to another thread or terminates entire process

Example usage

You’ll need to understand stacks *really well*

Review: stack (aka call stack)

5

int main(argc,

argv){

 …

 f(3.14)

 …

}

int f(x){

 …

 g();

 …

}

int g(y){

 …

}

stack frame for
main()

PC/IP

SP

FP

Review: stack (aka call stack)

6

int main(argc,

argv){

 …

 f(3.14)

 …

}

int f(x){

 …

 g();

 …

}

int g(y){

 …

}

stack frame for
main()

stack frame for f()

PC/IP

SP

FP

Review: stack (aka call stack)

7

int main(argc,

argv){

 …

 f(3.14)

 …

}

int f(x){

 …

 g();

 …

}

int g(y){

 …

}

stack frame for
main()

stack frame for f()

SP

FP

arguments (3.14)

return address

local variables

saved registers

saved FP (main)

scratch space

PC/IP

Review: stack (aka call stack)

8

int main(argc,

argv){

 …

 f(3.14)

 …

}

int f(x){

 …

 g();

 …

}

int g(y){

 …

}

stack frame for
main()

stack frame for f()

stack frame for g()

PC/IP

SP

FP

arguments (3.14)

return address

local variables

saved registers

saved FP (main)

scratch space

Review: stack (aka call stack)

9

int main(argc,

argv){

 …

 f(3.14)

 …

}

int f(x){

 …

 g();

 …

}

int g(y){

 …

}

stack frame for
main()

stack frame for f()

PC/IP

SP

FP

arguments (3.14)

return address

local variables

saved registers

saved FP (main)

scratch space

Review: stack (aka call stack)

10

int main(argc,

argv){

 …

 f(3.14)

 …

}

int f(x){

 …

 g();

 …

}

int g(y){

 …

}

stack frame for
main()PC/IP

SP

FP

Each thread has its own stack!!

Each thread has its own stack!!
”process stack”

thread 1 stack

thread 2 stack

•And its own PC (aka IP), SP, FP,
general purpose registers

Each thread has its own stack!!
”process stack”

thread 1 stack

thread 2 stack

•And the process has only one stack

We need some magic…

 (where’s the thread?)

But we have only one CPU, one core

•and save the state of the other threads in a secret
location

•The state of a thread (aka context) consists of
• its registers (including PC, SP, and FP)
• its stack
• possibly more stuff (scheduling state)

We run one thread at a time

•When a thread exits (thread_exit) or yields (thread_yield)
another thread, if any, gets to run

• If a thread yields, we need to save its context

•We need to be able to restore another context

Context Switching

Where to store the context of a thread?

• Convenient to push a thread’s registers onto the stack
• but you can’t save the stack pointer on the stack…

• Keep the stack pointer in a Thread Control Block
• one TCB per thread

Thread Control Block
stack frame

stack frame
SP

BASE saved registers

Thread Control Block
(initial state)

SP

BASE

Scheduling State of a Thread

• Running
• currently running

• Runnable (aka Ready)
• TCB on the run queue (aka ready queue)

• Terminated
• TCB on the zombie queue

thread_init()

• Initializes thread package

• Maintains global variables:
• run queue, zombie queue, and current thread

• Initial run queue and zombie queues are empty

• Allocates a TCB, but *not* a stack
• because process already has one in use

• Set TCB->base to NULL to mark no stack has been allocated

• Current thread points to allocated TCB

thread_create(f, arg, stack_size)

• Create a new thread

• Allocates a TCB and a stack (of the given size)
• set TCB->base to “bottom”, and TCB->sp to “top”

• May or may not immediately switch to the new thread
• I think it’s easier if you switch immediately

thread_yield()

• See if the run queue is empty
• if so, we’re done

• Get next TCB of the run queue

• Put current TCB on the run queue

• Switch contexts
• Save registers on the stack
• Save sp in current TCB
• Restore sp of next TCB
• Restore registers from the stack
• Check to see if there are any threads on the zombie queue

thread_exit()

• See if the run queue is empty
• if so, exit from the process using exit(0)

• Put TCB on zombie queue

• Get next TCB of the run queue

• Switch contexts
• As before

• Next thread cleans up last thread!

ctx_switch(&old_sp, new_sp)

25

USAGE:

struct tcb *current;
struct queue run_queue, zombie_queue;

void thread_yield(){
 struct tcb *old = current;
 run_queue.add(old);
 current = scheduler();
 if (current == old) return;
 ctx_switch(&old->sp, current->sp)
 while (zombie_queue is not empty) …
}

ctx_switch: // ip already pushed!
pushq %rbp

 pushq %rbx
pushq %r15
pushq %r14
pushq %r13
pushq %r12
pushq %r11
pushq %r10
pushq %r9
pushq %r8
movq %rsp, (%rdi)
movq %rsi, %rsp
popq %r8
popq %r9
popq %r10
popq %r11
popq %r12
popq %r13
popq %r14
popq %r15
popq %rbx
popq %rbp
retq

Starting a new thread

26

ctx_start:
 pushq %rbp
 pushq %rbx

pushq %r15
pushq %r14
pushq %r13
pushq %r12
pushq %r11
pushq %r10
pushq %r9
pushq %r8
movq %rsp, (%rdi)
movq %rsi, %rsp
call *%rdx

void ctx_entry(){
 (*current->func)();
 thread_exit();
 // this location cannot be reached
}

void thread_create(func){
 struct tcb *old = current;
 runQueue.add(old);
 current = malloc(sizeof(struct tcb));
 current->func = func;
 current->stack = malloc(…);
 ctx_start(&old->sp, top of stack, ctx_entry)
 while (zombie_queue is not empty) …
}

Come to front if you need a partner

Synchronization Primitives

Semaphores

• We’re not teaching general semaphores in CS4410 anymore

• A semaphore is a kind of counter:
struct sema;

void sema_init(struct sema *sema, unsigned int count);

void sema_dec(struct sema *sema);

void sema_inc(struct sema *sema);

bool sema_release(struct sema *sema);

Semaphore interface

void sema_init(struct sema *sema, unsigned int count)

• Initialize the semaphore to the given counter

void sema_dec(struct sema *sema)

• Wait until sema > 0, then decrement semaphore

void sema_inc(struct sema *sema)

• Increment the semaphore

bool sema_release(struct sema *sema)

• Release the semaphore

Example usage: Producer/Consumer

in

out

producers

consumers

Producers block
when buffer is full

bounded
buffer

Consumers block
when buffer is empty

Example usage: Producer/Consumer

Example usage: Producer/Consumer

Example usage: Producer/Consumer

Semaphore implementation

• Associate a counter and a queue with each semaphore

• If thread tries to decrement a semaphore with a zero counter, put its
TCB on the semaphore queue
• otherwise decrement the counter

• If thread increments a semaphore with a non-empty queue, don’t
increment the counter but move one TCB from the semaphore’s
queue to the ready queue
• otherwise increment the counter

On Testing

Tip 1: use assertions in your implementation
(and not in your test code)
• Pepper your code with assertions before testing

• think carefully about invariants

• check invariants as often as possible

• write code to check invariants

Quick aside on using assertions

• assert(P) --- executable comment

• Important: P should have no side effects
• so, don’t do assert(sema_release(s))

• assert statements should be no-ops and can be turned off

• use assert statements to check correctness, not to detect failures
• so, don’t do p = malloc(); assert(p != NULL)

• split conjunctions
• so, don’t do assert(P && Q) but do assert(P); assert(Q)

Tip 2: don’t ignore warnings

• Compile with –g –Wall
• e.g., cc –g –Wall x.c

• Do *not* submit code with outstanding warnings

• Do *not* get rid of warnings by hasty casting
• Be very careful and only cast if you know exactly what you’re doing

Tip 3: run small tests

• Don’t run very large tests (10s of operations or more)
• you are unlikely to find bugs that you can’t find with small tests

• it’s hard to figure out what went wrong

• tests may take a long time for no good reason

Tip 4: use valgrind

• Will immediately notify you if
• you are using uninitialized memory (e.g., from malloc())

• you are accessing illegal memory

• you are leaking memory

• It will give you lots of information about how it happened

• Easiest to install under Linux, so use a virtual machine or log into
CSUGlab Linux machines

Tip 5: only check things that are specified

• Carefully read the spec and design tests for each specified case

• Do not check things that are not specified
• sema_dec(NULL) has unspecified behavior---don’t test it

Tip 6: think carefully about corner cases

• be systematic

Tip 7: test your test program

• don’t just run it against your own implementation

• take your implementation and break it in various ways

• see if your test program notices

	Slide 1: P1: Implement a Multi-Threading Package (in user space)
	Slide 2: Implement the following interface:
	Slide 3: Example usage
	Slide 4: You’ll need to understand stacks *really well*
	Slide 5: Review: stack (aka call stack)
	Slide 6: Review: stack (aka call stack)
	Slide 7: Review: stack (aka call stack)
	Slide 8: Review: stack (aka call stack)
	Slide 9: Review: stack (aka call stack)
	Slide 10: Review: stack (aka call stack)
	Slide 11: Each thread has its own stack!!
	Slide 12: Each thread has its own stack!!
	Slide 13: Each thread has its own stack!!
	Slide 14: But we have only one CPU, one core
	Slide 15: We run one thread at a time
	Slide 16: Context Switching
	Slide 17: Where to store the context of a thread?
	Slide 18: Thread Control Block
	Slide 19: Thread Control Block (initial state)
	Slide 20: Scheduling State of a Thread
	Slide 21: thread_init()
	Slide 22: thread_create(f, arg, stack_size)
	Slide 23: thread_yield()
	Slide 24: thread_exit()
	Slide 25: ctx_switch(&old_sp, new_sp)
	Slide 26: Starting a new thread
	Slide 27: Come to front if you need a partner
	Slide 28: Synchronization Primitives
	Slide 29: Semaphores
	Slide 30: Semaphore interface
	Slide 31: Example usage: Producer/Consumer
	Slide 32: Example usage: Producer/Consumer
	Slide 33: Example usage: Producer/Consumer
	Slide 34: Example usage: Producer/Consumer
	Slide 35: Semaphore implementation
	Slide 36: On Testing
	Slide 37: Tip 1: use assertions in your implementation (and not in your test code)
	Slide 38: Quick aside on using assertions
	Slide 39: Tip 2: don’t ignore warnings
	Slide 40: Tip 3: run small tests
	Slide 41: Tip 4: use valgrind
	Slide 42: Tip 5: only check things that are specified
	Slide 43: Tip 6: think carefully about corner cases
	Slide 44: Tip 7: test your test program

