File Systems

CS 4410
Operating Systems

Cornell GIS

COMPUTING AND INFORMATION SCIENCE

[R. Agarwal, L. Alvisi, A. Bracy, M. George, F. Schneider, E. Sirer, R. Van Renesse]

Where shall we store our data?
Process Memory? (why is this a bad idea?)

File Systems 101

Long-term Information Storage Needs

* large amounts of information

* information must survive processes

* need concurrent access by multiple processes

Solution: the File System Abstraction
* Presents applications w/ persistent, named data

 Two main components:
* Files
* Directories

The File Abstraction

* File: a named collection of data
* has two parts
» data - what a userorapplication putsin it

- typically an array of bytes
* metadata - information added and managed
by the OS

- name, size, owner, security info, modification time

The abstraction stack

/O systems are accessed

. Application
through a series of - |
. Library
layered abstractions |
(Ov? e< File System
2 C
5\35& o Block Cache
e kot >
A Block Device Interface
Qﬁ\c,e < Device Driver
\ (Jc,ec’c’ Memory-mapped I/O,
s L DMA, Interrupts
Physical Device

The Block Cache

Application

Library

* acache for the disk File System
» cachesrecently read blocks
 buffers recently written blocks

More Layers

* allows datato be read or Application
written in fixed-sized blocks .
. . Library
e uniform interface to _
: : File System
disparate devices
Block Cache

e translate between OS
abstractions and hw-

specific details of /0

devices

* Control registers, bulk data Physical Device
transfer, OS notifications

First things first: Name the File!

1. Files are abstracted unit of information
2. Don’t care exactly where on disk the file is

- Files have human readable names
» file given name upon creation
* use the name to access the file

Name + Extension

Naming Conventions
* Some things OS dependent:
Windows not case sensitive, Posix (typically) is

File Extensions, OS dependent:
* Windows:
- attaches meaning to extensions
- associates applications to extensions
* Posix:
- extensions not enforced by OS
- Some apps mightinsist upon them (.c, .h, .o, .s, for C

compiler) .

Directory

Directory: provides names for files
» Storedin afile
* Amapping from each name to a specific
underlying file or directory

File directory File index Block

Name ™pp Number mm====p Number

structure

| 871
music 320
work 219
foo.txt 871 w @

Path Names

Absolute: path of file from the root directory
/home/ada/projects/babbage.txt
Relative: path from the working directory

projects/babbage.txt
(current working dir stored in process’ PCB)

2 special entries in each Posix directory:

. current dir
“..” for parent

To access a file:
e Go tothe folder where file resides —OR—
* Specify the path where thefileis

11

Directories

OS uses path name to find directory
Example: /home/tom/foo.txt

) S S——
('
File 2 | bin 737 <~
“I” | usr 924
home 158 ----1--;
'----------------.! (‘j
-->File 158 | mike 682
“/home” | ada 818
tom 830----;
Directory: -->File 830
v “IThome/tom”

maps file name to attributes &
2 options:

« Windows: directory stores attributes

location

* Posix: files’ attributes stored elsewhere

: e B
music 320
work 219
foo.txt 871------: /
> File 871 T G
“IThome/tom/foo.txt” | brown fox
jumped
over the
lazy dog. 12

Basic File System Operations

* Create a new file

* Open an existing file

* Write to afile

* Read from afile

* Seek to somewhere in a file
* Delete a file

* Truncate afile

13

Challenges for File System Designers

Performance: despite limitations of disks
* leverage spatial locality

Flexibility: need jacks-of-all-trades, diverse workloads,
not just FS for application X

Persistence: maintain/update user data + internal data
structures on persistent storage devices

Reliability: must store data for long periods of time,
despite OS crashes or HW malfunctions

Security: file should have protection mechanisms

14

Implementation Basics

Directories
 file name = file number
Index structures
* file number + offset = block
Free space maps
* find a free block
Locality heuristics
* policies enabled by above mechanisms
- group directories
- prefetching
- make writes sequential
- keep blocks of a file close together

15

File System Properties

Most files are small
* need strong support for small files
* blockssize can’t be too big

Some files are very large
* must allow large files
* large file access should be reasonably efficient

16

File System Layout

File System is stored on disks
* disk can be divided into 1 or more partitions

e Sector O of disk called Master Boot Record
* Contains code for booting

* end of MBR: partition table (partitions’ start & end addrs)
First block of each partition has boot block

* more code loaded by MBR and executed on boot

- PARTITION #1

MBR PARTITION
TABLE

Storing Files

Files can be allocated in different ways:

* Contiguous allocation

All blocks together, in order
* Linked Structure

Each block points to the next block
* Indexed Structure

Some kind of tree of blocks

Which is best?

* Forsequential access? Random access?
 Large files? Small files? Mixed?

18

Contiguous Allocation

All blocks together, in order

+ Simple: state required per file: start block & size

+ Efficient: entire file can be read with one seek

- External Fragmentation: see next slide

- Usability: user needs to know size of file at time of creation

filel file2 file3 file4 file5
Used in CD-ROMs, DVDs

Fragmentation

Internal Fragmentation

* allocated file size (in blocks) may be larger than
requested file size (in bytes); this size difference is
wasted disk space

External Fragmentation
 total disk space exists to store afile, but itis not
useful because the free blocks are not contiguous,
and the file does not fit in any of the holes

Linked List Allocation

Each file is stored as linked list of blocks
* First word of each block points to next block
 Rest of disk blockis file data

+ Space Utilization: no space lost to external fragmentation
+ Simple: only need to find 15t block of each file

- Performance: random access is slow

- Implementation: blocks mix meta-data and data

File A

Physical
Block

21

File Allocation Table (FAT) FS

[late 70’s]

Microsoft File Allocation Table

e originally: MS-DOS, early version of Windows

* today: still widely used (e.g., CD-ROMs, thumb
drives, camera cards)

File table:

* Linear map of all blocks on disk
 Each file a linked list of blocks

data

22

FAT File System

FAT Data Blocks
e 1 entry per block 0 8 File 9
1 .
e EOF for last block 2 [0 File 12
. . 3 N File 9 Block 3
e O indicates free block .51 |
e directory entry maps
name to FAT index =
9| File 9 Block 0
Folder 10| - File 9 Block 1
11 [i File 9 Block 2
part. Tt | 2 2 | et |
maggie.txt| 12 13 0 | i
14 0 P
15 0 | |
16 |[EOF | || Fiet2Bock1 |
L J 1 J 18 O
FAT data blocks ;3 8

s \

FAT Directory Structure music 320

Folder: a file with 32-byte entries fo .t 871

Each Entry:
» 8 byte name + 3 byte extension (ASClI)
* creation date and time

last modification date and time

first block in the file (index into FAT)
size of the file

Long and Unicode file names take up
multiple entries

24

How is FAT Good?

+ Simple: state required per file: start block only
+ Widely supported

+ No external fragmentation

+ block used only for data

25

How is FAT Bad?

* Poor locality
* Poor random access
* Many file seeks unless entire FAT in memory:

Example: 1TB (2%° bytes) disk, 4KB (21%) block
size, FAT has 256 million (2%8) entries (!)

4 bytes per entry = 1GB (23°) of main memory
required for FS

26

Unix File System (UFS)

Tree-based, multi-level index

27

UFS Superblock

Identifies file system’s key parameters:

* type
* blocksize
* inode array location and size

e |ocation of free list

blocknumber o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

i |

super i-node Remaining blocks

block blocks .

Inode Array

UFS I-Nodes

* inode array
* inode

- Metadata
- 12 (or so) direct pointérs

- 3indirect pointers

block number o 1 3 4 5 6 7
blocks:

I I
superblock i-node blocks Remaining blocks

Inode

File Metadata

Direct Pointer }

DP

DP

DP

DP

DP

DP

DP

DP

DP

DP

Direct Pointer |

Indirect Pointer

Dbl. Indirect Ptr. }

J Tripl. Indirect Ptr. |}

LI

Data
Blocks

30

[]

[——

0 G) () ())) f)
b b " " R
] H ']]]] ' '
[N ' ' '] '] i
: ! . : : : : i :
: ! : : : : ' : :
: ! : beeenyeelt : : Pemmedt
4 : ! : ' : : '
CS ' " ' [' ' (]
k " " " "]] [}
£8 | O O DOoOg O
] H]
2@ i i 7 A R
P " : " P
b " " ; " ; "
'] '] ! H !]
b " " ; " ; "
' h ' h ' '] H
' H ' ' ' K e d [
: ! : : oot N :
@B g | " " | 1
O O =X ' ' : : H
=5-5- 10 B N o R A
V) cT 2 i m m z 3 %
QO cm b " " " " "
] ' '] ' " "
Q IR m o
S P m : m : :
' ! : ' ! : :
' ' ') . mee=- 1i=====
u 50 0 " " " H
() : ! : ! LI .
+) 5298 | | m et n
ndm i ! : ' '
O Fem | hessmoooonnossesenno oo B
- R m i
S . sl =lE
S = 2 sl EE|%
()] o £ cls|lole
= [«b)
O m CSlalalalalalalalalalalf|e|2]
@) = —||ala|a|a|lala|la|lalals|t|T]|T
- <5] — r.rll PR —
L o Dnb.”
v
IIIII \\\\\
— /,/ \\\
[I , o

Inode Array

UFS

UFS: Index Structures

Inode Array Triple Double
Indirect Indirect Indirect Data
Inode Blocks Blocks Blocks Blocks
.................................. :).
~A2xaK=48K directly reachable.
File Metadata | | from the inode
Direct Pointer [f--¢ & 47TTTTTTTTT T ’.
DP '
DP §]
DP T > ‘
DP b
12 DP

DP

DP
DP

Indirect Pointer '
“JTripl. Indirect Ptr. J---------- I
1K

Assume: blocks are 4K,
block references are 4 bytes

What elseis in an inode?

 Type -
. . e
- ordlnaryflle i
- directory
- Symbolic link Direct Pointer |
- special device =k |
« Size of thefile (in #bytes) gg
« #linksto thei-node DP
« Owner (userid and igroupd) =
« Protection bits DP
« Times: creation, last accessed, =
last mOdIfled Direct Pointer
Indirect Pointer }
Dbl. Indirect Ptr. }
Tripl. Indirect Ptr.

4 Characteristics of UFS

1. Tree Structure
 efficiently find any block of a file
2. High Degree (or fan out)
* minimizes number of seeks
* supports sequential reads & writes

3. Fixed Structure
* implementation simplicity
4. Asymmetric
* not all data blocks are at the same level

* supports large files
» small files don’t pay large overheads

33

Small Files in UFS

Inode Array

Inode

Data
Blocks

File Metadata

e — . all blocks
e U reached via

Direct Pointer }--- v

o B ——] direCt

DP

DP

. pomte rs

Direct Pointer

NIL

NIL

NIL

NIL

e 4 KB file consumes ~16 KB

NIL

NIL

(4 KB data + 3 levels of 4KB

NIL

NIL

NIL

indirect blocks)

NIL

NIL

* reading file requires reading 5

blocks to traverse tree >

Sparse Files in UFS

Inode

Example:

File Metadata

1 @ offset 230
Triple Double
Indirect Indirect Indirect Data
Blocks Blocks Blocks Blocks

Direct Pointer

NIL

NIL

Filesize(ls -1h):1.1GB

NIL

NIL

Space consumed (du -hs): 16 KB

NIL

NIL

NIL

Read from hole: O0-filled buffer created

NIL

Write to hole: storage blocks for data

NIL

+ required indirect blocks allocated

NIL

NIL

NIL

Dbl. Indirect Ptr.

NIL

2 x4 KB blocks: 1 @ offset 0

35

UFS: Stepstoreading /foo/bar/baz

Read & Open:
(1) inode #2 (root has inumber 2), find root’s blocknum (912)
(2) rootdirectory (in block 912), find foo’s inumber (31)

(3) inode #31, find foo’s blocknum (194)

(4) foo (in block 194), find bar’s inumber (73)
(5)

(6)

(7)

(8)

93

inode #73, find bar’s blocknum (991)

bar (in block 991), find baz’s inumber (40) _
inode #40, find data blocks (302,913, 301) first few steps to be
data blocks (302, 913, 301) skipped

- Caching often allows

7
8

1 3 7 5

; il i

fie 23| |under I Me2r| [bin 47]nd If Ibaz 4@

=
(o0}
00
N
(o]
(<)}

912 § 194 |1 302 |1 991 an I remembe :

far 81 stand foo 31 ..Jni 80
.. g%i bar 73|71 - forget:I*"lusr 98 rt it 87
2 31 40 73 194 301 302 912 913 991

inodes data blocks

Free List

e List of blocks not in use

* How to maintain?
1. linked list of free blocks — =
- inefficient (why?)
2. linked list of metadata blocks that in turn
point to free blocks > = —

- simple and efficient #rmivnumne
3. bitmap ﬂ//l h ot L}W

- good for contiguous allocation

File System API: Creation

Creating and deleting files

* creat(): creates

1. anew file with some metadata; and
2. aname for the file in a directory

* link() creates a hard link-a new name for the
same underlying file, and increments link count
ininode

* unlink() removes a name for a file from its
directory and decrements link count in inode. If

last link, file itself and resources it held are
deleted

38

L 2\,

()

UFS Directory Structure music 320

o] work 219
Originally: array of 16 byte entries foo.txt 871

* 14 byte file name
* 2 bytei-node number
Now: linked lists. Each entry contains:
* 4-byte inode number
* Length of name
 Name (UTF8 or some other Unicode encoding)

First entry is “.”, points to self

Second entry is “..”, points to parent inode

39

Hard & Soft Links

* a mapping from each name to a specific
underlying file or directory (hard link)
» asoftlinkisinstead a mapping from a file
name to another file name
- it’s simply a file that contains the name of
another file

- use as alias: a soft link that continues to remain
valid when the (path of) the target file name
changes

40

File System Consistency

System crashes before modified files written back?
* Leadsto inconsistencyinFS
* fsck (UNIX) & scandisk (Windows) check FS
consistency

Algorithm:
* Build table with info about each block

- initially each block is unknown except superblock
* Scan through the inodes and the freelist

- Keep track in the table

- If block already in table, note error

* Finally, see if all blocks have been visited

Inconsistent FS Examples

©123456789ABCDETF

Consistent 1tbiezzzbezz@E inuse

0101000011000 11 free list

©123456789ABCDETF

Missing Block2 1tb1ezzzbezzee inuse

(add it to the free list) 0P00100001100011 free list

. . . ©9123456789ABCDETF
Duplicate Block 4 in Free List

(rebuild free list) 1tbiezzzbez@e inuse

©010200001100011 free list

Duplicate Block 4 in Data ©123456789ABCDEF

List (copy block and add it to IIIIIIIIIIIIIIII In use

one file) 0@1@100001106011freeli5t.

Check Directory System

Use a per-file table instead of per-block

Parse entire directory structure, start at root
* Increment counter for each file you encounter
* Thisvalue can be >1 due to hard links
* Symbolic links are ignored

Compare table counts w/link counts in i-node
 Ifi-node count # our directory count
- Fixi-node count both larger than 0
- Ifi-node count =0, i-node is free
* remove the corresponding directory entries
- If directory-count =0, no links to the i-node

» add to “lost+found” directory under unique name
43

	Slide 1: File Systems
	Slide 2: Where shall we store our data?
	Slide 3: File Systems 101
	Slide 4: The File Abstraction
	Slide 5: The abstraction stack
	Slide 6: The Block Cache
	Slide 7: More Layers
	Slide 8: First things first: Name the File!
	Slide 9: Name + Extension
	Slide 10: Directory
	Slide 11: Path Names
	Slide 12: Directories
	Slide 13: Basic File System Operations
	Slide 14: Challenges for File System Designers
	Slide 15: Implementation Basics
	Slide 16: File System Properties
	Slide 17: File System Layout
	Slide 18: Storing Files
	Slide 19: Contiguous Allocation
	Slide 20: Fragmentation
	Slide 21: Linked List Allocation
	Slide 22: File Allocation Table (FAT) FS
	Slide 23: FAT File System
	Slide 24: FAT Directory Structure
	Slide 25: How is FAT Good?
	Slide 26: How is FAT Bad?
	Slide 27: Unix File System (UFS)
	Slide 28: UFS Superblock
	Slide 29: UFS I-Nodes
	Slide 30: UFS: Index Structures
	Slide 31: UFS: Index Structures
	Slide 32: What else is in an inode?
	Slide 33: 4 Characteristics of UFS
	Slide 34: Small Files in UFS
	Slide 35: Sparse Files in UFS
	Slide 36: UFS: Steps to reading /foo/bar/baz
	Slide 37: Free List
	Slide 38: File System API: Creation
	Slide 39: UFS Directory Structure
	Slide 40: Hard & Soft Links
	Slide 41: File System Consistency
	Slide 42: Inconsistent FS Examples
	Slide 43: Check Directory System

