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Process Memory? (why is this a bad idea?)

Where shall we store our data?
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Long-term Information Storage Needs
•  large amounts of information

•  information must survive processes

•  need concurrent access by multiple processes

Solution: the File System Abstraction
• Presents applications w/ persistent, named data

• Two main components:
• Files

• Directories

File Systems 101
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• File: a named collection of data
• has two parts
• data – what a user or application puts in it

- typically an array of bytes

• metadata – information added and managed 
by the OS

- name, size, owner, security info, modification time

The File Abstraction
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I/O systems are accessed 
through a series of 
layered abstractions

The abstraction stack
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The Block Cache
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• a cache for the disk
• caches recently read blocks
• buffers recently written blocks



More Layers
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1. Files are abstracted unit of information 
2. Don’t care exactly where on disk the file is

➜ Files have human readable names
• file given name upon creation
• use the name to access the file

First things first: Name the File!
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Naming Conventions
• Some things OS dependent: 
 Windows not case sensitive, Posix (typically) is 

File Extensions, OS dependent:
• Windows: 

- attaches meaning to extensions

- associates applications to extensions

• Posix:
- extensions not enforced by OS

- Some apps might insist upon them (.c, .h, .o, .s, for C 
compiler)

Name + Extension
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Directory: provides names for files
• Stored in a file
• A mapping from each name to a specific 

underlying file or directory

Directory
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Absolute: path of file from the root directory

       /home/ada/projects/babbage.txt
Relative: path from the working directory

 projects/babbage.txt
 (current working dir stored in process’ PCB)

2 special entries in each Posix directory:
“.” current dir
“..” for parent

To access a file:
• Go to the folder where file resides    —OR— 
• Specify the path where the file is

Path Names
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Directories
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all files
OS uses path name to find directory
Example: /home/tom/foo.txt 

Directory: 

maps file name to attributes & location

2 options: 

• Windows: directory stores attributes

• Posix: files’ attributes stored elsewhere



• Create a new file
• Open an existing file
• Write to a file
• Read from a file
• Seek to somewhere in a file
• Delete a file
• Truncate a file

Basic File System Operations
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Performance: despite limitations of disks
•  leverage spatial locality

Flexibility: need jacks-of-all-trades, diverse workloads, 
not just FS for application X

Persistence: maintain/update user data + internal data 
structures on persistent storage devices

Reliability: must store data for long periods of time, 
despite OS crashes or HW malfunctions

Security: file should have protection mechanisms

Challenges for File System Designers
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Directories
• file name ➜ file number  

Index structures
• file number + offset ➜ block

Free space maps
• find a free block

Locality heuristics
• policies enabled by above mechanisms

- group directories

- prefetching

- make writes sequential

- keep blocks of a file close together

Implementation Basics
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Most files are small
• need strong support for small files
• block size can’t be too big

Some files are very large
• must allow large files
• large file access should be reasonably efficient

File System Properties
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File System Layout
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File System is stored on disks
• disk can be divided into 1 or more partitions
• Sector 0 of disk called Master Boot Record
• Contains code for booting

• end of MBR: partition table (partitions’ start & end addrs)

First block of each partition has boot block
• more code loaded by MBR and executed on boot

entire disk

PARTITION #4PARTITION #2PARTITION #1 PARTITION #3

PARTITION

TABLE
MBR

Root DirFree Space MgmtBOOT BLOCK I-NodesSUPERBLOCK Files & Directories



Files can be allocated in different ways:

•  Contiguous allocation
All blocks together, in order

•  Linked Structure
Each block points to the next block

•  Indexed Structure
Some kind of tree of blocks

Which is best?
• For sequential access? Random access?

• Large files? Small files? Mixed?

Storing Files
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All blocks together, in order

+ Simple:  state required per file: start block & size

+ Efficient:  entire file can be read with one seek

– External Fragmentation:  see next slide

– Usability: user needs to know size of file at time of creation

Used in CD-ROMs, DVDs

Contiguous Allocation
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Fragmentation

Internal Fragmentation
• allocated file size (in blocks) may be larger than 

requested file size (in bytes); this size difference is 
wasted disk space

External Fragmentation
• total disk space exists to store a file, but it is not 

useful because the free blocks are not contiguous, 
and the file does not fit in any of the holes



Each file is stored as linked list of blocks
• First word of each block points to next block
• Rest of disk block is file data

+ Space Utilization:  no space lost to external fragmentation

+ Simple:  only need to find 1st block of each file

– Performance:  random access is slow

– Implementation:  blocks mix meta-data and data

Linked List Allocation
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Microsoft File Allocation Table
• originally: MS-DOS, early version of Windows 
• today: still widely used (e.g., CD-ROMs, thumb 

drives, camera cards)

File table:
•  Linear map of all blocks on disk
•  Each file a linked list of blocks

File Allocation Table (FAT) FS
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FAT File System
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• 1 entry per block
• EOF for last block
• 0 indicates free block
• directory entry maps 
name to FAT index

Folder

bart.txt 9

maggie.txt 12

0

0

0

EOF
EOF

0
0
0

0
0
0

0

0

0
0

0

data blocksFAT



Folder: a file with 32-byte entries
Each Entry:
•  8 byte name + 3 byte extension (ASCII)
•  creation date and time
•  last modification date and time
•  first block in the file (index into FAT)
•  size of the file
•  Long and Unicode file names take up 

multiple entries

FAT Directory Structure
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+ Simple: state required per file: start block only
+ Widely supported
+ No external fragmentation
+ block used only for data

How is FAT Good?
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How is FAT Bad?
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• Poor locality
• Poor random access
• Many file seeks unless entire FAT in memory:
Example: 1TB (240 bytes) disk, 4KB (212) block 
size, FAT has 256 million (228) entries (!) 
4 bytes per entry ➜ 1GB (230) of main memory 
required for FS



Tree-based, multi-level index

Unix File System (UFS)
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Identifies file system’s key parameters:
•  type
•  block size
•  inode array location and size
•  location of free list

UFS Superblock
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block number 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

blocks:

Remaining blocksi-node 
blocks

super
block



• inode array
• inode

- Metadata

- 12 (or so) direct pointers

- 3 indirect pointers

UFS I-Nodes
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block number 0 1 2 3 4 5 6 7

blocks:

Remaining blocksi-node blockssuperblock

. . .



UFS: Index Structures
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UFS: Index Structures
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12

Assume: blocks are 4K,
block references are 4 bytes

12x4K=48K directly reachable 
from the inode

1K
1K

1K

1K 1K

1K

1K

1K
n=1:  4MB

n=2: 4GB

n=3: 4TB



• Type
- ordinary file
- directory
- symbolic link
- special device

• Size of the file (in #bytes)
• # links to the i-node
• Owner (user id and igroupd)
• Protection bits
• Times: creation, last accessed, 

last modified

What else is in an inode?
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File 

Metadata



1. Tree Structure
• efficiently find any block of a file

2. High Degree (or fan out)
• minimizes number of seeks
• supports sequential reads & writes

3. Fixed Structure
• implementation simplicity

4. Asymmetric
• not all data blocks are at the same level 
• supports large files
• small files don’t pay large overheads

4 Characteristics of UFS
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Small Files in UFS
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What if fixed 3 levels instead? 

• 4 KB file consumes ~16 KB

(4 KB data + 3 levels of 4KB 
indirect blocks)

• reading file requires reading 5 
blocks to traverse tree

all blocks 
reached via 

direct 
pointers



Sparse Files in UFS
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File size (ls -lh): 1.1 GB
Space consumed (du -hs):  16 KB

Read from hole: 0-filled buffer created
Write to hole: storage blocks for data 
     + required indirect blocks allocated

Example:
2 x 4 KB blocks: 1 @ offset 0
      1 @ offset 230



Read & Open:
(1) inode #2  (root has inumber 2), find root’s blocknum (912)
(2) root directory (in block 912), find foo’s inumber (31)
(3) inode #31, find foo’s blocknum (194)
(4) foo (in block 194), find bar’s inumber (73) 
(5) inode #73, find bar’s blocknum (991)
(6) bar (in block 991), find baz’s inumber (40)
(7) inode #40, find data blocks (302, 913, 301)
(8) data blocks (302, 913, 301)

UFS: Steps to reading /foo/bar/baz 
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skipped



• List of blocks not in use
• How to maintain?

1. linked list of free blocks

- inefficient (why?)

2. linked list of metadata blocks that in turn 
point to free blocks

- simple and efficient

3. bitmap

- good for contiguous allocation

Free List
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Creating and deleting files
• creat(): creates

1. a new file with some metadata; and
2. a name for the file in a directory

• link() creates a hard link–a new name for the 
same underlying file, and increments link count 
in inode

• unlink() removes a name for a file from its 
directory and decrements link count in inode. If 
last link, file itself and resources it held are 
deleted

File System API: Creation
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Originally: array of 16 byte entries
• 14 byte file name
• 2 byte i-node number

Now: linked lists.  Each entry contains:
• 4-byte inode number
• Length of name
• Name (UTF8 or some other Unicode encoding)

First entry is “.”, points to self
Second entry is “..”, points to parent inode

UFS Directory Structure
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• a mapping from each name to a specific 
underlying file or directory (hard link)

• a soft link is instead a mapping from a file 
name to another file name

- it’s simply a file that contains the name of 
another file

- use as alias: a soft link that continues to remain 
valid when the (path of) the target file name 
changes

Hard & Soft Links
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System crashes before modified files written back?
• Leads to inconsistency in FS
• fsck (UNIX) & scandisk (Windows) check FS 

consistency

Algorithm:
• Build table with info about each block
- initially each block is unknown except superblock

• Scan through the inodes and the freelist
- Keep track in the table

- If block already in table, note error
• Finally, see if all blocks have been visited

File System Consistency
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Inconsistent FS Examples
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0 1 2 3 4 5 6 7 8 9 A B C D E F

1 1 0 1 0 1 1 1 1 0 0 1 1 1 0 0

0 0 1 0 1 0 0 0 0 1 1 0 0 0 1 1 free list

in useConsistent 

0 1 2 3 4 5 6 7 8 9 A B C D E F

1 1 0 1 0 1 1 1 1 0 0 1 1 1 0 0

0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 1

in use
Missing Block 2

(add it to the free list)
free list

Duplicate Block 4 in Free List 

(rebuild free list)

0 1 2 3 4 5 6 7 8 9 A B C D E F

1 1 0 1 0 1 1 1 1 0 0 1 1 1 0 0

0 0 1 0 2 0 0 0 0 1 1 0 0 0 1 1 free list

in use

0 1 2 3 4 5 6 7 8 9 A B C D E F

1 1 0 1 0 2 1 1 1 0 0 1 1 1 0 0

0 0 1 0 1 0 0 0 0 1 1 0 0 0 1 1 free list

in use
Duplicate Block 4 in Data

List (copy block and add it to 

one file)



Use a per-file table instead of per-block
Parse entire directory structure, start at root
• Increment counter for each file you encounter
• This value can be >1 due to hard links
• Symbolic links are ignored

Compare table counts w/link counts in i-node
• If i-node count ≠ our directory count

- Fix i-node count both larger than 0

- If i-node count = 0, i-node is free

• remove the corresponding directory entries

- If directory-count = 0, no links to the i-node

• add to “lost+found” directory under unique name

Check Directory System
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