
File Systems

CS 4410
Operating Systems

[R. Agarwal, L. Alvisi, A. Bracy, M. George, F. Schneider, E. Sirer, R. Van Renesse]

Process Memory? (why is this a bad idea?)

Where shall we store our data?

2

Long-term Information Storage Needs
• large amounts of information

• information must survive processes

• need concurrent access by multiple processes

Solution: the File System Abstraction
• Presents applications w/ persistent, named data

• Two main components:
• Files

• Directories

File Systems 101

3

• File: a named collection of data
• has two parts
• data – what a user or application puts in it

- typically an array of bytes

• metadata – information added and managed
by the OS

- name, size, owner, security info, modification time

The File Abstraction

4

I/O systems are accessed
through a series of
layered abstractions

The abstraction stack

File System API

& Performance

Device

Access

Application

Library

File System

Block Cache

Block Device Interface

Device Driver

Memory-mapped I/O,

DMA, Interrupts

Physical Device

The Block Cache

File System API

& Performance

Device

Access

Application

Library

File System

Block Cache

Block Device Interface

Device Driver

Memory-mapped I/O,

DMA, Interrupts

Physical Device

• a cache for the disk
• caches recently read blocks
• buffers recently written blocks

More Layers

File System API

& Performance

Device

Access

• allows data to be read or
written in fixed-sized blocks

• uniform interface to
disparate devices

• translate between OS
abstractions and hw-
specific details of I/O
devices

• Control registers, bulk data
transfer, OS notifications

Application

Library

File System

Block Cache

Block Device Interface

Device Driver

Memory-mapped I/O,

DMA, Interrupts

Physical Device

1. Files are abstracted unit of information
2. Don’t care exactly where on disk the file is

➜ Files have human readable names
• file given name upon creation
• use the name to access the file

First things first: Name the File!

8

Naming Conventions
• Some things OS dependent:
 Windows not case sensitive, Posix (typically) is

File Extensions, OS dependent:
• Windows:

- attaches meaning to extensions

- associates applications to extensions

• Posix:
- extensions not enforced by OS

- Some apps might insist upon them (.c, .h, .o, .s, for C
compiler)

Name + Extension

9

Directory: provides names for files
• Stored in a file
• A mapping from each name to a specific

underlying file or directory

Directory

10

directory index
structure

Block
Number

File
Number

871

File
Name

foo.txt

Absolute: path of file from the root directory

 /home/ada/projects/babbage.txt
Relative: path from the working directory

 projects/babbage.txt
 (current working dir stored in process’ PCB)

2 special entries in each Posix directory:
“.” current dir
“..” for parent

To access a file:
• Go to the folder where file resides —OR—
• Specify the path where the file is

Path Names

11

Directories

12

all files
OS uses path name to find directory
Example: /home/tom/foo.txt

Directory:

maps file name to attributes & location

2 options:

• Windows: directory stores attributes

• Posix: files’ attributes stored elsewhere

• Create a new file
• Open an existing file
• Write to a file
• Read from a file
• Seek to somewhere in a file
• Delete a file
• Truncate a file

Basic File System Operations

13

Performance: despite limitations of disks
• leverage spatial locality

Flexibility: need jacks-of-all-trades, diverse workloads,
not just FS for application X

Persistence: maintain/update user data + internal data
structures on persistent storage devices

Reliability: must store data for long periods of time,
despite OS crashes or HW malfunctions

Security: file should have protection mechanisms

Challenges for File System Designers

14

Directories
• file name ➜ file number

Index structures
• file number + offset ➜ block

Free space maps
• find a free block

Locality heuristics
• policies enabled by above mechanisms

- group directories

- prefetching

- make writes sequential

- keep blocks of a file close together

Implementation Basics

15

Most files are small
• need strong support for small files
• block size can’t be too big

Some files are very large
• must allow large files
• large file access should be reasonably efficient

File System Properties

16

File System Layout

17

File System is stored on disks
• disk can be divided into 1 or more partitions
• Sector 0 of disk called Master Boot Record
• Contains code for booting

• end of MBR: partition table (partitions’ start & end addrs)

First block of each partition has boot block
• more code loaded by MBR and executed on boot

entire disk

PARTITION #4PARTITION #2PARTITION #1 PARTITION #3

PARTITION

TABLE
MBR

Root DirFree Space MgmtBOOT BLOCK I-NodesSUPERBLOCK Files & Directories

Files can be allocated in different ways:

• Contiguous allocation
All blocks together, in order

• Linked Structure
Each block points to the next block

• Indexed Structure
Some kind of tree of blocks

Which is best?
• For sequential access? Random access?

• Large files? Small files? Mixed?

Storing Files

18

All blocks together, in order

+ Simple: state required per file: start block & size

+ Efficient: entire file can be read with one seek

– External Fragmentation: see next slide

– Usability: user needs to know size of file at time of creation

Used in CD-ROMs, DVDs

Contiguous Allocation

19

file1 file2 file3 file4 file5

Fragmentation

Internal Fragmentation
• allocated file size (in blocks) may be larger than

requested file size (in bytes); this size difference is
wasted disk space

External Fragmentation
• total disk space exists to store a file, but it is not

useful because the free blocks are not contiguous,
and the file does not fit in any of the holes

Each file is stored as linked list of blocks
• First word of each block points to next block
• Rest of disk block is file data

+ Space Utilization: no space lost to external fragmentation

+ Simple: only need to find 1st block of each file

– Performance: random access is slow

– Implementation: blocks mix meta-data and data

Linked List Allocation

21

File
block

0

next

File
block

1

next

File
block

2

next

File
block

3

next

File
block

4

next

File A

Physical
Block

7 8 33 17 4

Microsoft File Allocation Table
• originally: MS-DOS, early version of Windows
• today: still widely used (e.g., CD-ROMs, thumb

drives, camera cards)

File table:
• Linear map of all blocks on disk
• Each file a linked list of blocks

File Allocation Table (FAT) FS

22

[late 70’s]

data

next

data

next

data

next

data

FAT File System

23

• 1 entry per block
• EOF for last block
• 0 indicates free block
• directory entry maps
name to FAT index

Folder

bart.txt 9

maggie.txt 12

0

0

0

EOF
EOF

0
0
0

0
0
0

0

0

0
0

0

data blocksFAT

Folder: a file with 32-byte entries
Each Entry:
• 8 byte name + 3 byte extension (ASCII)
• creation date and time
• last modification date and time
• first block in the file (index into FAT)
• size of the file
• Long and Unicode file names take up

multiple entries

FAT Directory Structure

24

+ Simple: state required per file: start block only
+ Widely supported
+ No external fragmentation
+ block used only for data

How is FAT Good?

25

How is FAT Bad?

26

• Poor locality
• Poor random access
• Many file seeks unless entire FAT in memory:
Example: 1TB (240 bytes) disk, 4KB (212) block
size, FAT has 256 million (228) entries (!)
4 bytes per entry ➜ 1GB (230) of main memory
required for FS

Tree-based, multi-level index

Unix File System (UFS)

27

Identifies file system’s key parameters:
• type
• block size
• inode array location and size
• location of free list

UFS Superblock

28

block number 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

blocks:

Remaining blocksi-node
blocks

super
block

• inode array
• inode

- Metadata

- 12 (or so) direct pointers

- 3 indirect pointers

UFS I-Nodes

29

block number 0 1 2 3 4 5 6 7

blocks:

Remaining blocksi-node blockssuperblock

. . .

UFS: Index Structures

30

UFS: Index Structures

31

12

Assume: blocks are 4K,
block references are 4 bytes

12x4K=48K directly reachable
from the inode

1K
1K

1K

1K 1K

1K

1K

1K
n=1: 4MB

n=2: 4GB

n=3: 4TB

• Type
- ordinary file
- directory
- symbolic link
- special device

• Size of the file (in #bytes)
• # links to the i-node
• Owner (user id and igroupd)
• Protection bits
• Times: creation, last accessed,

last modified

What else is in an inode?

32

File

Metadata

1. Tree Structure
• efficiently find any block of a file

2. High Degree (or fan out)
• minimizes number of seeks
• supports sequential reads & writes

3. Fixed Structure
• implementation simplicity

4. Asymmetric
• not all data blocks are at the same level
• supports large files
• small files don’t pay large overheads

4 Characteristics of UFS

33

Small Files in UFS

34

What if fixed 3 levels instead?

• 4 KB file consumes ~16 KB

(4 KB data + 3 levels of 4KB
indirect blocks)

• reading file requires reading 5
blocks to traverse tree

all blocks
reached via

direct
pointers

Sparse Files in UFS

35

File size (ls -lh): 1.1 GB
Space consumed (du -hs): 16 KB

Read from hole: 0-filled buffer created
Write to hole: storage blocks for data
 + required indirect blocks allocated

Example:
2 x 4 KB blocks: 1 @ offset 0
 1 @ offset 230

Read & Open:
(1) inode #2 (root has inumber 2), find root’s blocknum (912)
(2) root directory (in block 912), find foo’s inumber (31)
(3) inode #31, find foo’s blocknum (194)
(4) foo (in block 194), find bar’s inumber (73)
(5) inode #73, find bar’s blocknum (991)
(6) bar (in block 991), find baz’s inumber (40)
(7) inode #40, find data blocks (302, 913, 301)
(8) data blocks (302, 913, 301)

UFS: Steps to reading /foo/bar/baz

194

…

301 302

…

912 913

…

991

baz 40
ni 80
nit 87

nd I
remembe
r.I do
and I

bin 47
foo 31
usr 98

fie 23
far 81
bar 73

under
stand
.

I hear
and I
forget.
I see a

912 194 302
913
301

991

2 31 40 73

inodes data blocks

1 23 4 8 8857 6

Caching often allows
first few steps to be

skipped

• List of blocks not in use
• How to maintain?

1. linked list of free blocks

- inefficient (why?)

2. linked list of metadata blocks that in turn
point to free blocks

- simple and efficient

3. bitmap

- good for contiguous allocation

Free List

37

Creating and deleting files
• creat(): creates

1. a new file with some metadata; and
2. a name for the file in a directory

• link() creates a hard link–a new name for the
same underlying file, and increments link count
in inode

• unlink() removes a name for a file from its
directory and decrements link count in inode. If
last link, file itself and resources it held are
deleted

File System API: Creation

38

Originally: array of 16 byte entries
• 14 byte file name
• 2 byte i-node number

Now: linked lists. Each entry contains:
• 4-byte inode number
• Length of name
• Name (UTF8 or some other Unicode encoding)

First entry is “.”, points to self
Second entry is “..”, points to parent inode

UFS Directory Structure

39

• a mapping from each name to a specific
underlying file or directory (hard link)

• a soft link is instead a mapping from a file
name to another file name

- it’s simply a file that contains the name of
another file

- use as alias: a soft link that continues to remain
valid when the (path of) the target file name
changes

Hard & Soft Links

40

System crashes before modified files written back?
• Leads to inconsistency in FS
• fsck (UNIX) & scandisk (Windows) check FS

consistency

Algorithm:
• Build table with info about each block
- initially each block is unknown except superblock

• Scan through the inodes and the freelist
- Keep track in the table

- If block already in table, note error
• Finally, see if all blocks have been visited

File System Consistency

41

Inconsistent FS Examples

42

0 1 2 3 4 5 6 7 8 9 A B C D E F

1 1 0 1 0 1 1 1 1 0 0 1 1 1 0 0

0 0 1 0 1 0 0 0 0 1 1 0 0 0 1 1 free list

in useConsistent

0 1 2 3 4 5 6 7 8 9 A B C D E F

1 1 0 1 0 1 1 1 1 0 0 1 1 1 0 0

0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 1

in use
Missing Block 2

(add it to the free list)
free list

Duplicate Block 4 in Free List

(rebuild free list)

0 1 2 3 4 5 6 7 8 9 A B C D E F

1 1 0 1 0 1 1 1 1 0 0 1 1 1 0 0

0 0 1 0 2 0 0 0 0 1 1 0 0 0 1 1 free list

in use

0 1 2 3 4 5 6 7 8 9 A B C D E F

1 1 0 1 0 2 1 1 1 0 0 1 1 1 0 0

0 0 1 0 1 0 0 0 0 1 1 0 0 0 1 1 free list

in use
Duplicate Block 4 in Data

List (copy block and add it to

one file)

Use a per-file table instead of per-block
Parse entire directory structure, start at root
• Increment counter for each file you encounter
• This value can be >1 due to hard links
• Symbolic links are ignored

Compare table counts w/link counts in i-node
• If i-node count ≠ our directory count

- Fix i-node count both larger than 0

- If i-node count = 0, i-node is free

• remove the corresponding directory entries

- If directory-count = 0, no links to the i-node

• add to “lost+found” directory under unique name

Check Directory System

43

	Slide 1: File Systems
	Slide 2: Where shall we store our data?
	Slide 3: File Systems 101
	Slide 4: The File Abstraction
	Slide 5: The abstraction stack
	Slide 6: The Block Cache
	Slide 7: More Layers
	Slide 8: First things first: Name the File!
	Slide 9: Name + Extension
	Slide 10: Directory
	Slide 11: Path Names
	Slide 12: Directories
	Slide 13: Basic File System Operations
	Slide 14: Challenges for File System Designers
	Slide 15: Implementation Basics
	Slide 16: File System Properties
	Slide 17: File System Layout
	Slide 18: Storing Files
	Slide 19: Contiguous Allocation
	Slide 20: Fragmentation
	Slide 21: Linked List Allocation
	Slide 22: File Allocation Table (FAT) FS
	Slide 23: FAT File System
	Slide 24: FAT Directory Structure
	Slide 25: How is FAT Good?
	Slide 26: How is FAT Bad?
	Slide 27: Unix File System (UFS)
	Slide 28: UFS Superblock
	Slide 29: UFS I-Nodes
	Slide 30: UFS: Index Structures
	Slide 31: UFS: Index Structures
	Slide 32: What else is in an inode?
	Slide 33: 4 Characteristics of UFS
	Slide 34: Small Files in UFS
	Slide 35: Sparse Files in UFS
	Slide 36: UFS: Steps to reading /foo/bar/baz
	Slide 37: Free List
	Slide 38: File System API: Creation
	Slide 39: UFS Directory Structure
	Slide 40: Hard & Soft Links
	Slide 41: File System Consistency
	Slide 42: Inconsistent FS Examples
	Slide 43: Check Directory System

