Disks and RAID

CS 4410
Operating Systems

Cornell CIS

COMPUTING AND INFORMATION SCIENCE

[R. Agarwal, L. Alvisi, A. Bracy, F. Schneider, E. Sirer, R. Van Renesse]

Disk Abstraction

» disk.getsize()
e returns the #blocks on the disk

 disk.read(offset) =2 block

* returns the block at the given offset

o disk.write(offset, block)
» writes the block at the given offset

Typical block size: 512 bytes (hard drives) to 2
Kbytes (CDs/DVDs) to 4 Kbytes (SSDs)

What do we want from storage?

* Fast: datais there when you want it

* Reliable: data fetched is what you stored
* Plenty: there should be lots of it

» Affordable: won’t break the bank

Storage Devices

» Magnetic disks (HDD)
 Flash drives (SSD)

Magnetic Disks are 65 years old!

THAT WAS THEN THIS IS NOW
e 13th September 1956 « 2.5-3.5” hard drive
 The IBM RAMAC 350 « Example: 500GB Western Digital
 Total Storage =5 million characters Scorpio Blue hard drive
(about 3.75 MB) easilyuptoafewTB

http://royal.pingdom.com/2008/04/08/the-history-of-computer-data-storage-in-pictures/ 5

RAM (Memory) vs HDD (Disk) vs SSD, 2020’s

RAM HDD SSD
Typical Size 16 GB 178 178
Cost $5-10 per GB | $0.05 per GB | $0.10 per GB
Latency 15 ns 15 ms 1ms
Throughput
(Sequential) 8000 MB/s 175 MB/s 500 MB/s
Power Reliance volatile | non-volatile | non-volatile

Reading from disk

Surface

Must specify: Platter
e cylinder# Surface
(distance from spindle)
 head #

* sector#

* transfer size

* memory address

Spindle —s [

Head

Motor

-
N—r

0

Track

Motor

Sector

Arm
Assembly

—

Disk overheads

Disk Latency = Seek Time + Rotation Time + Transfer Time
» Seek: to getto the track (5-15 millisecs (ms))
* Rotational Latency: to get to the sector (4-8 millisecs (ms))
(on average, only need to wait half a rotation)
* Transfer: get bits off the disk (25-50 microsecs (us))
Sector

Seek Time

aCkNNN
I I ~
~
~
~
~
~
~
~
~
~
~o

Rotational
Latency

(7 0

Disk Scheduling

Objective: minimize seek time

Context: a queue of cylinder numbers (#0-199)

Head pointer @ 53
Queue: 98, 183, 37, 122, 14, 124, 65, 67

Metric: how many cylinders traversed?

“elevator algorithms”

Disk Scheduling: FIFO

* Schedule disk operations in order they arrive
* Downsides?

FIFO Schedule?
Total head movement?

Head pointer @ 53
Queue: 98, 183, 37, 122, 14, 124, 65, 67

Disk Scheduling: FIFO

* Schedule disk operations in order they arrive
* Downsides?

FIFO Schedule?
Total head movement?

640 cylinders

Head pointer @ 53
Queue: 98, 183, 37, 122, 14, 124, 65, 67

Disk Scheduling: Shortest Seek Time First

 Select request with minimum seek time from
current head position

* Aform of Shortest Job First (SJF) scheduling

* Not optimal: suppose cluster of requests at far end
of disk =» starvation!

SSTF Schedule?
Total head movement?

Head pointer @ 53
Queue: 98, 183, 37, 122, 14, 124, 65, 67

Disk Scheduling: Shortest Seek Time First

 Select request with minimum seek time from
current head position

* Aform of Shortest Job First (SJF) scheduling

* Not optimal: suppose cluster of requests at far end
of disk =» starvation!

SSTF Schedule?
Totalhead movement? 236 cylinders

Head pointer @ 53
Queue: 98, 183, 37, 122, 14, 124, 65, 67

Disk Scheduling: SCAN

Elevator Algorithm:

» arm starts at one end of disk
* moves to other end, servicing requests

* movement reversed @ end of disk
* repeat

SCAN Schedule?
Total head movement?

Head pointer @ 53 \
Queue: 98, 183, 37, 122, 14, 124, 65, 6

Disk Scheduling: SCAN

Elevator Algorithm:
» arm starts at one end of disk
* moves to other end, servicing requests
* movement reversed @ end of disk
* repeat

SCAN Schedule?
Total head movement?

208 cylinders

Head pointer @ 53 \
Queue: 98, 183, 37, 122, 14, 124, 65, 6

Disk Scheduling: C-SCAN

Circular list treatment:
* head moves from one end to other
* servicing requests as it goes
* reaches the end, returns to beginning
* no requests serviced on return trip
+ More uniform wait time than SCAN 6.

C-SCAN Schedule? 5.
Total Head movement?

Head pointer @ 53
Queue: 98, 183, 37, 122, 14, 124, 65, 67

17

Disk Scheduling: C-SCAN

Circular list treatment:
* head moves from one end to other
* servicing requests as it goes
* reaches the end, returns to beginning
* no requests serviced on return trip
+ More uniform wait time than SCAN 6.

C-SCAN Schedule? 387 cylinders .

Total Head movement?

Head pointer @ 53
Queue: 98, 183, 37, 122, 14, 124, 65, 67

18

Solid State Drives (Flash)
Most SSDs based on NAND-flash

* retains its state for years without power

19

NAND Flash

Charge is stored in Floating Gate
(can have Single and Multi-Level Cells)

Source

Floating

/ Gate

Thin Oxide
Layer

p substrate
Floating Gate MOSFET (FGMOS)

https://flashdba.com/2015/01/09/understanding-flash-floating-gates-and-wear/

Flash Operations

* Erase block: sets each cell to “1”
* erase granularity = “erasure block” =128-512 KB
* time: several ms
» Write page: can only write erased pages
» write granularity = 1 page (2-4KBytes)
 time: 100s of microseconds
+ Read page: Note: SSD page == disk block

* read granularity = 1 page (not “erasure block”)
e time: 10s of microseconds

e Flash drive consists of several banks that can be
accessed in parallel

 Each bank can have thousands of blocks
21

Flash Limitations

* can’t write 1 word or page
* must first erase whole blocks to write a page

* limited # of erase cycles per block (memory wear)

e 103-10° erases and the cell wears out

 reads can “disturb” nearby words and overwrite them with
garbage

« Lots of techniques to compensate:
* error correcting codes
* bad page/erasure block management

» wear leveling: trying to distribute erasures across the entire
driver

22

Flash Translation Layer (FTL)

Flash device firmware maps logical page #

to a physical location

* Garbage collect erasure block by copying live pages to
new location, then erase

* Wear-leveling: only write each physical page a limited
number of times
» Sector sparing: Remap pages that no longer work

Transparent to the device user

23

What do we want from storage?

* Fast: datais there when you want it

* Reliable: data fetched is what you stored
* Plenty: there should be lots of it

» Affordable: won’t break the bank

Disks can fail

» Either individual blocks
* bitflips
» scratches on hard disk platter
* wearon SSD

* Or the entire disk
* damage to hard disk head

e Metrics: MTTF and MTTR

 Mean Time To Failure
* Mean Time To Repalr

25

Throughput, Bandwidth, and Latency
* Throughput is usually measured in

* Bandwidth is usually measured in

)

 Latency is usually measured in

Throughput and bandwidth are essentially
the same thing, as each disk read/write
operation transfers a fixed number of bytes

(“block size”)

26

Latency vs Throughput

* If you do one operation at a time, then

Latency X Throughput = 1.

» e.g., ifittakes 100 ms to do a read or write
operation, then you can do 10 operations
per second

» But operations can often be or

executed in
* throughput higher than 1/latency
* (road analogy)

27

Sequential vs Random access

 With disks and file systems, sequential
access is usually much faster than
random access

» Reasons for faster sequential access:
¢ ”on the disk
* blocks canbe*

)

28

RAID

* Redundant Array of Inexpensive Disks

* Inindustry, “I” is for “Independent”
« The alternative is SLED, single large expensive disk

« RAID + RAID controller looks just like SLED to computer
e yay, abstraction!

RAID-0

Blocks striped across disks

+ Fast
latency?
throughput?
+ Cheap = C Disk 0 Y (Disk1 >
capacity? stripe 0 stripe 1
- Unreliable stripe 2 stripe 3
max #failures? stripe 4 stripe 5
MTTE? stripe 6 stripe 7
stripe 8 stripe 9
stripe 10 stripe 11
stripe 12 stripe 13

stripe 14 stripe 15

Striping and Reliability

Striping reduces reliability
* More disks = higher probability of some disk failing

e Ndisks: 1/Nt"mean time between failures of 1 disk

What can we do to improve Disk Reliability?

31

RAID-1

Disks Mirrored:
blocks written in 2 places

+ Reliable

deals well with disk loss
but not corruption

(how many needed for that?)
+ Fast
latency?
throughput?
- Expensive

CDisk 0

data 0
datal
data 2
data 3
data 4
C
C
C

ata 5
ata 6
ata 7

e

(Disk 1 5

data 0
datal
data 2
data 3
data 4
C
C
C

ata 5
ata 6
ata 7

N

RAID-2

bit-level striping with ECC codes

« Tdiskarmssynchronized, move in unison

 Complicated controller (= very unpopular)

* Detect & Correct 1 error with no performance degradation

+ Reliable

- Expensive (7/4t" x single disk)
parity 1 =357
parity 2 =367
parity 4 =567

001 010 011 100 101 110 111
(C Disk3) C Disk4) C Disk5) Disk6) Disk7)
parity 1 parity 2 bit 1 parity 3 bit 2 bit 3 bit 4
parity 4 parity 5 bit 5 parity 6 bit 6 bit 7 bit 8
parity 7 parity 8 bit 9 parity 9 bit 10 bit 11 bit 12
parity 10 parity 11 bit 13 parity 12 bit 14 bit 15 bit 16
e - - vy __ . i g —_

33

2 more rarely-used RAIDS

RAID-3: byte-level striping + parity disk

* read accesses all data disks

* write accesses all data disks + parity disk

» On disk failure: read parity disk, compute missing data
RAID-4: block-level striping + parity disk

+ better spatial locality for disk access

C Disk1l Y € Disk2 D Disk3) Disk4 D C Disk5

+ Cheap
- Slow Writes
- Reliability?

datal

data 5

data 9

data 13

e,

data 2

data 3

data 6

data7

data 10

data 11

data 14

data 15

e,

e,

data 4

data 8

data 12

data 16

. g

parity 1

parity 2

parity 3

parity 4

e

36

Using a parity disk

*Dy =D, ®D, D ... Dy-_1
* b =XOR operation
» thereforeD; @ D, &P .

* Ifone of D;..

.Di:Dl@“‘

@ Dy=0

. Dy _4 fails, we can
reconstruct its data by XOR-ing all the
remaining drives

S

D D;_1 €

> Diyy @D ...

D Dy

37

Updating a block in RAID-4

* Suppose block lives on disk D,

* Method 1:

* read corresponding blockson D, ... Dy_4

* XOR all with new content of block

* write disk D; and Dy in parallel

* Method 2 (better):

* read D, (old content) and Dy,

* Dy =Dy D D, © Dy ,
=D; ©D; D ... 0 Dy-1 O D, © Dy
=D; DD, D ...0 Dy_,

* write disk D; and D In parallel

* write throughput: 1/2 of single disk

- parity disk is the bottleneck
» write latency: double of single disk

Streaming update in RAID-4

* Save up updates to stripesacross Dy... Dy_4
* Batching!

*» ComputeDy =D, DD, D ... D Dy_4

* Write D,... Dy in parallel

* Throughput: (N — 1) times single disk

* Note that in all write cases Dy must always be

updated
=>» D, is a write performance bottleneck

=» and suffers from more wear than the other disks

39

RAID 5: Rotating Parity w/Striping

+ Reliable

you can lose one disk

+ Fast

(N — 1) x seq. write throughput of single disk
N x read throughput of single disk
N /4 x random write throughput of single disk

+ Affordable
C pisk0) Disk1l)
parity 0-3 data 0

data 4 parity 4-7
data 8 data 9
data 12 data 13
data 16 data 17

N I __

<Disk 2) (Disk 3>
datal data 2
data 5 data 6
parity 8-11 data 10
data 14 parity 12-15
data 18 data 19
N— N 7

<Disk 4>

data 3
data 7
data 11

data 15
parity 16-19
N— 7

	Slide 1: Disks and RAID
	Slide 2: Disk Abstraction
	Slide 3: What do we want from storage?
	Slide 4: Storage Devices
	Slide 5: Magnetic Disks are 65 years old!
	Slide 6: RAM (Memory) vs HDD (Disk) vs SSD, 2020’s
	Slide 7: Reading from disk
	Slide 9: Disk overheads
	Slide 10: Disk Scheduling
	Slide 11: Disk Scheduling: FIFO
	Slide 12: Disk Scheduling: FIFO
	Slide 13: Disk Scheduling: Shortest Seek Time First
	Slide 14: Disk Scheduling: Shortest Seek Time First
	Slide 15: Disk Scheduling: SCAN
	Slide 16: Disk Scheduling: SCAN
	Slide 17: Disk Scheduling: C-SCAN
	Slide 18: Disk Scheduling: C-SCAN
	Slide 19: Solid State Drives (Flash)
	Slide 20: NAND Flash
	Slide 21: Flash Operations
	Slide 22: Flash Limitations
	Slide 23: Flash Translation Layer (FTL)
	Slide 24: What do we want from storage?
	Slide 25: Disks can fail
	Slide 26: Throughput, Bandwidth, and Latency
	Slide 27: Latency vs Throughput
	Slide 28: Sequential vs Random access
	Slide 29: RAID
	Slide 30: RAID-0
	Slide 31: Striping and Reliability
	Slide 32: RAID-1
	Slide 33: RAID-2
	Slide 36: 2 more rarely-used RAIDS
	Slide 37: Using a parity disk
	Slide 38: Updating a block in RAID-4
	Slide 39: Streaming update in RAID-4
	Slide 41: RAID 5: Rotating Parity w/Striping

