
Disks and RAID

CS 4410
Operating Systems

[R. Agarwal, L. Alvisi, A. Bracy, F. Schneider, E. Sirer, R. Van Renesse]

• disk.getsize()
• returns the #blocks on the disk

• disk.read(offset) → block
• returns the block at the given offset

• disk.write(offset, block)
• writes the block at the given offset

Typical block size: 512 bytes (hard drives) to 2
Kbytes (CDs/DVDs) to 4 Kbytes (SSDs)

Disk Abstraction

2

• Fast: data is there when you want it

• Reliable: data fetched is what you stored

• Plenty: there should be lots of it

• Affordable: won’t break the bank

What do we want from storage?

3

• Magnetic disks (HDD)
• Flash drives (SSD)

Storage Devices

4

THAT WAS THEN

• 13th September 1956

• The IBM RAMAC 350

• Total Storage = 5 million characters

(about 3.75 MB)

Magnetic Disks are 65 years old!

5http://royal.pingdom.com/2008/04/08/the-history-of-computer-data-storage-in-pictures/

THIS IS NOW

• 2.5-3.5” hard drive

• Example: 500GB Western Digital
Scorpio Blue hard drive

• easily up to a few TB

RAM (Memory) vs HDD (Disk) vs SSD, 2020’s

6

RAM HDD SSD

Typical Size 16 GB 1 TB 1TB

Cost $5-10 per GB $0.05 per GB $0.10 per GB

Latency 15 ns 15 ms 1ms

Throughput
(Sequential) 8000 MB/s 175 MB/s 500 MB/s

Power Reliance volatile non-volatile non-volatile

Must specify:

• cylinder #

 (distance from spindle)

• head #

• sector #

• transfer size

• memory address

Reading from disk

7

Disk Latency = Seek Time + Rotation Time + Transfer Time
• Seek: to get to the track (5-15 millisecs (ms))

• Rotational Latency: to get to the sector (4-8 millisecs (ms))

(on average, only need to wait half a rotation)

• Transfer: get bits off the disk (25-50 microsecs (μs))

Disk overheads

9

Track

Sector
Seek Time

Rotational

Latency

Objective: minimize seek time

Context: a queue of cylinder numbers (#0-199)

Metric: how many cylinders traversed?

Disk Scheduling

10

Head pointer @ 53

Queue: 98, 183, 37, 122, 14, 124, 65, 67

“elevator algorithms”

• Schedule disk operations in order they arrive

• Downsides?

FIFO Schedule?
Total head movement?

Disk Scheduling: FIFO

11

Head pointer @ 53

Queue: 98, 183, 37, 122, 14, 124, 65, 67

• Schedule disk operations in order they arrive

• Downsides?

FIFO Schedule?
Total head movement?

Disk Scheduling: FIFO

12

Head pointer @ 53

Queue: 98, 183, 37, 122, 14, 124, 65, 67

640 cylinders

• Select request with minimum seek time from
current head position

• A form of Shortest Job First (SJF) scheduling

• Not optimal: suppose cluster of requests at far end
of disk ➜ starvation!

SSTF Schedule?
Total head movement?

Disk Scheduling: Shortest Seek Time First

13

Head pointer @ 53

Queue: 98, 183, 37, 122, 14, 124, 65, 67

• Select request with minimum seek time from
current head position

• A form of Shortest Job First (SJF) scheduling

• Not optimal: suppose cluster of requests at far end
of disk ➜ starvation!

SSTF Schedule?
Total head movement?

Disk Scheduling: Shortest Seek Time First

14

Head pointer @ 53

Queue: 98, 183, 37, 122, 14, 124, 65, 67

236 cylinders

Elevator Algorithm:
• arm starts at one end of disk

• moves to other end, servicing requests

• movement reversed @ end of disk

• repeat

SCAN Schedule?
Total head movement?

Disk Scheduling: SCAN

15

Head pointer @ 53

Queue: 98, 183, 37, 122, 14, 124, 65, 67

Elevator Algorithm:
• arm starts at one end of disk

• moves to other end, servicing requests

• movement reversed @ end of disk

• repeat

SCAN Schedule?
Total head movement?

Disk Scheduling: SCAN

16

Head pointer @ 53

Queue: 98, 183, 37, 122, 14, 124, 65, 67

208 cylinders

Circular list treatment:

• head moves from one end to other

• servicing requests as it goes

• reaches the end, returns to beginning

• no requests serviced on return trip

+ More uniform wait time than SCAN

Disk Scheduling: C-SCAN

17

C-SCAN Schedule?
Total Head movement?

Head pointer @ 53

Queue: 98, 183, 37, 122, 14, 124, 65, 67

Circular list treatment:

• head moves from one end to other

• servicing requests as it goes

• reaches the end, returns to beginning

• no requests serviced on return trip

+ More uniform wait time than SCAN

Disk Scheduling: C-SCAN

18

C-SCAN Schedule?
Total Head movement?

Head pointer @ 53

Queue: 98, 183, 37, 122, 14, 124, 65, 67

387 cylinders

Most SSDs based on NAND-flash
• retains its state for years without power

Solid State Drives (Flash)

19

Charge is stored in Floating Gate
(can have Single and Multi-Level Cells)

NAND Flash

20https://flashdba.com/2015/01/09/understanding-flash-floating-gates-and-wear/

Floating Gate MOSFET (FGMOS)

• Erase block: sets each cell to “1”
• erase granularity = “erasure block” = 128-512 KB

• time: several ms

• Write page: can only write erased pages
• write granularity = 1 page (2-4KBytes)

• time: 100s of microseconds

• Read page:
• read granularity = 1 page
• time: 10s of microseconds

• Flash drive consists of several banks that can be
accessed in parallel
• Each bank can have thousands of blocks

Flash Operations

21

Note: SSD page == disk block
(not “erasure block”)

• can’t write 1 word or page
•must first erase whole blocks to write a page

• limited # of erase cycles per block (memory wear)

• 103-106 erases and the cell wears out
• reads can “disturb” nearby words and overwrite them with

garbage

• Lots of techniques to compensate:

• error correcting codes

• bad page/erasure block management

• wear leveling: trying to distribute erasures across the entire
driver

Flash Limitations

22

Flash Translation Layer (FTL)
Flash device firmware maps logical page #
to a physical location
• Garbage collect erasure block by copying live pages to

new location, then erase

• Wear-leveling: only write each physical page a limited
number of times

• Sector sparing: Remap pages that no longer work

Transparent to the device user

23

• Fast: data is there when you want it

• Reliable: data fetched is what you stored

• Plenty: there should be lots of it

• Affordable: won’t break the bank

What do we want from storage?

24

• Either individual blocks
• bit flips
• scratches on hard disk platter
• wear on SSD

• Or the entire disk
• damage to hard disk head

• Metrics: MTTF and MTTR
• Mean Time To Failure
• Mean Time To Repair

Disks can fail

25

• Throughput is usually measured in
“number of operations per second”

• Bandwidth is usually measured in
“number of bytes per second”

• Latency is usually measured in “seconds”

Throughput and bandwidth are essentially
the same thing, as each disk read/write
operation transfers a fixed number of bytes
(“block size”)

Throughput, Bandwidth, and Latency

26

• If you do one operation at a time, then
Latency × Throughput = 1.
• e.g., if it takes 100 ms to do a read or write

operation, then you can do 10 operations
per second

• But operations can often be pipelined or
executed in parallel
• throughput higher than 1/latency
• (road analogy)

Latency vs Throughput

27

• With disks and file systems, sequential
access is usually much faster than
random access

• Reasons for faster sequential access:
• “fewer seeks” on the disk
• blocks can be “prefetched”

Sequential vs Random access

28

• Redundant Array of Inexpensive Disks

• In industry, “I” is for “Independent”
• The alternative is SLED, single large expensive disk

• RAID + RAID controller looks just like SLED to computer
• yay, abstraction!

RAID

29

Blocks striped across disks

+ Fast

latency?

throughput?

+ Cheap

capacity?

– Unreliable

max #failures?

MTTF?

RAID-0

30

stripe 0

stripe 2

stripe 4

stripe 6

stripe 8

stripe 10

stripe 12

stripe 14

Disk 0

stripe 1

stripe 3

stripe 5

stripe 7

stripe 9

stripe 11

stripe 13

stripe 15

Disk 1

.

Striping reduces reliability
• More disks ➜ higher probability of some disk failing

• N disks: 1/Nth mean time between failures of 1 disk

What can we do to improve Disk Reliability?

Striping and Reliability

31

Disks Mirrored:

blocks written in 2 places

+ Reliable

deals well with disk loss
but not corruption

(how many needed for that?)

+ Fast

latency?

throughput?

– Expensive

RAID-1

32

data 0

data 1

data 2

data 3

data 4

data 5

data 6

data 7

Disk 1

. . .

data 0

data 1

data 2

data 3

data 4

data 5

data 6

data 7

Disk 0

. . .

bit-level striping with ECC codes
• 7 disk arms synchronized, move in unison

• Complicated controller (➜ very unpopular)

• Detect & Correct 1 error with no performance degradation

+ Reliable

– Expensive (7/4th x single disk)

parity 1 = 3⊕5⊕7

parity 2 = 3⊕6⊕7

parity 4 = 5⊕6⊕7

RAID-2

33

bit 2

bit 6

bit 10

bit 14

Disk 5

bit 1

bit 5

bit 9

bit 13

Disk 3Disk 2

parity 1

parity 4

parity 7

parity 10

Disk 1

parity 3

parity 6

parity 9

parity 12

Disk 4

parity 2

parity 5

parity 8

parity 11

bit 3

bit 7

bit 11

bit 15

Disk 6

bit 4

bit 8

bit 12

bit 16

Disk 7

001 010 011 100 101 110 111

RAID-3: byte-level striping + parity disk
• read accesses all data disks
• write accesses all data disks + parity disk
• On disk failure: read parity disk, compute missing data
RAID-4: block-level striping + parity disk
+ better spatial locality for disk access

+ Cheap

– Slow Writes

– Reliability?

2 more rarely-used RAIDS

36

data 2

data 6

data 10

data 14

Disk 2

data 1

data 5

data 9

data 13

Disk 1

parity 1

parity 2

parity 3

parity 4

Disk 5

data 3

data 7

data 11

data 15

Disk 3

data 4

data 8

data 12

data 16

Disk 4

𝐷𝑁 = 𝐷1⊕𝐷2⊕… ⊕𝐷𝑁−1
⊕ = XOR operation

• therefore 𝐷1⊕𝐷2⊕… ⊕𝐷𝑁 = 0

• If one of 𝐷1… 𝐷𝑁−1 fails, we can
reconstruct its data by XOR-ing all the
remaining drives
𝐷𝑖 = 𝐷1⊕… ⊕𝐷𝑖−1⊕ 𝐷𝑖+1⊕… ⊕𝐷𝑁

Using a parity disk

37

• Suppose block lives on disk 𝐷1
• Method 1:
• read corresponding blocks on 𝐷2 … 𝐷𝑁−1
• XOR all with new content of block
• write disk 𝐷1 and 𝐷𝑁 in parallel
• Method 2 (better):
• read 𝐷1 (old content) and 𝐷𝑁
𝐷𝑁
′ = 𝐷𝑁⊕𝐷1⊕𝐷1

′

=𝐷1⊕𝐷2⊕… ⊕𝐷𝑁−1⊕𝐷1⊕𝐷1
′

= 𝐷1
′ ⊕𝐷2⊕… ⊕𝐷𝑁−1

• write disk 𝐷1 and 𝐷𝑁 in parallel
• write throughput: ½ of single disk
- parity disk is the bottleneck

• write latency: double of single disk

Updating a block in RAID-4

38

• Save up updates to stripes across 𝐷1… 𝐷𝑁−1
• Batching!

• Compute 𝐷𝑁 = 𝐷1⊕𝐷2⊕… ⊕𝐷𝑁−1
• Write 𝐷1… 𝐷𝑁 in parallel
• Throughput: (𝑁 − 1) times single disk

• Note that in all write cases 𝐷𝑁 must always be
updated
𝐷𝑁 is a write performance bottleneck

➔and suffers from more wear than the other disks

Streaming update in RAID-4

39

+ Reliable

you can lose one disk

+ Fast

(𝑁 − 1) x seq. write throughput of single disk

𝑁 x read throughput of single disk

𝑁/4 x random write throughput of single disk

+ Affordable

RAID 5: Rotating Parity w/Striping

41

parity 0-3

data 4

data 8

data 12

data 16

Disk 0

data 0

parity 4-7

data 9

data 13

data 17

Disk 1

data 1

data 5

parity 8-11

data 14

data 18

Disk 2

data 2

data 6

data 10

parity 12-15

data 19

Disk 3

data 3

data 7

data 11

data 15

parity 16-19

Disk 4

	Slide 1: Disks and RAID
	Slide 2: Disk Abstraction
	Slide 3: What do we want from storage?
	Slide 4: Storage Devices
	Slide 5: Magnetic Disks are 65 years old!
	Slide 6: RAM (Memory) vs HDD (Disk) vs SSD, 2020’s
	Slide 7: Reading from disk
	Slide 9: Disk overheads
	Slide 10: Disk Scheduling
	Slide 11: Disk Scheduling: FIFO
	Slide 12: Disk Scheduling: FIFO
	Slide 13: Disk Scheduling: Shortest Seek Time First
	Slide 14: Disk Scheduling: Shortest Seek Time First
	Slide 15: Disk Scheduling: SCAN
	Slide 16: Disk Scheduling: SCAN
	Slide 17: Disk Scheduling: C-SCAN
	Slide 18: Disk Scheduling: C-SCAN
	Slide 19: Solid State Drives (Flash)
	Slide 20: NAND Flash
	Slide 21: Flash Operations
	Slide 22: Flash Limitations
	Slide 23: Flash Translation Layer (FTL)
	Slide 24: What do we want from storage?
	Slide 25: Disks can fail
	Slide 26: Throughput, Bandwidth, and Latency
	Slide 27: Latency vs Throughput
	Slide 28: Sequential vs Random access
	Slide 29: RAID
	Slide 30: RAID-0
	Slide 31: Striping and Reliability
	Slide 32: RAID-1
	Slide 33: RAID-2
	Slide 36: 2 more rarely-used RAIDS
	Slide 37: Using a parity disk
	Slide 38: Updating a block in RAID-4
	Slide 39: Streaming update in RAID-4
	Slide 41: RAID 5: Rotating Parity w/Striping

