

Research Night!!!

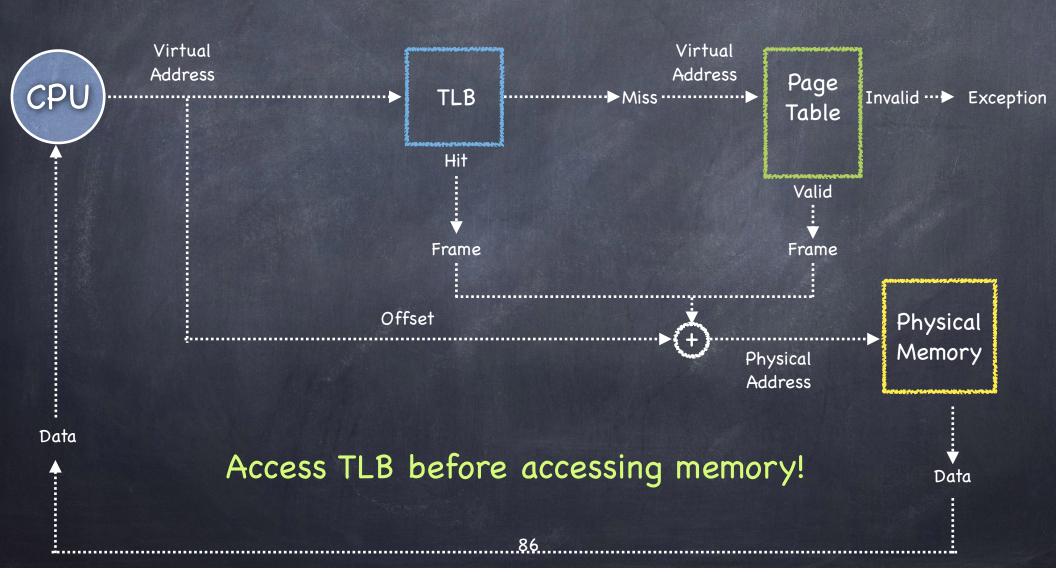
 If you are interested in undergraduate research

April 8 (This Thursday!!!)

5:30 to 7:30 pm

Over Discord:

https://discord.gg/ cCM3QuGY3B


Caching!

Keep the results of recent VA-PA translations in a structure called Translation Lookaside Buffer (TLB)

Speeding things up: The TLB

Address Translation with TLB

Hit and Miss

- The TLB is small; it cannot hold all PTEs
 - ▶ it can be fast only if it is small!
 - Some translations will inevitably miss the TLB
 - □ Must access memory to find the appropriate PTE
 - called walking the page table
 - incurs large performance penalty

Handling TLB Misses

- Hardware-managed (e.g., x86)
 - □ The hardware does the page walk
 - Hardware fetches PTE and inserts it in TLB
 - ▶ If TLB is full, must replace another TLB entry
 - Done transparently to system software
- Software-managed (e.g., MIPS)
 - □ Hardware raises an exception
 - □ OS does the page walk, fetches PTE, and inserts evicts entries in TLB

Tradeoffs, Tradeoffs...

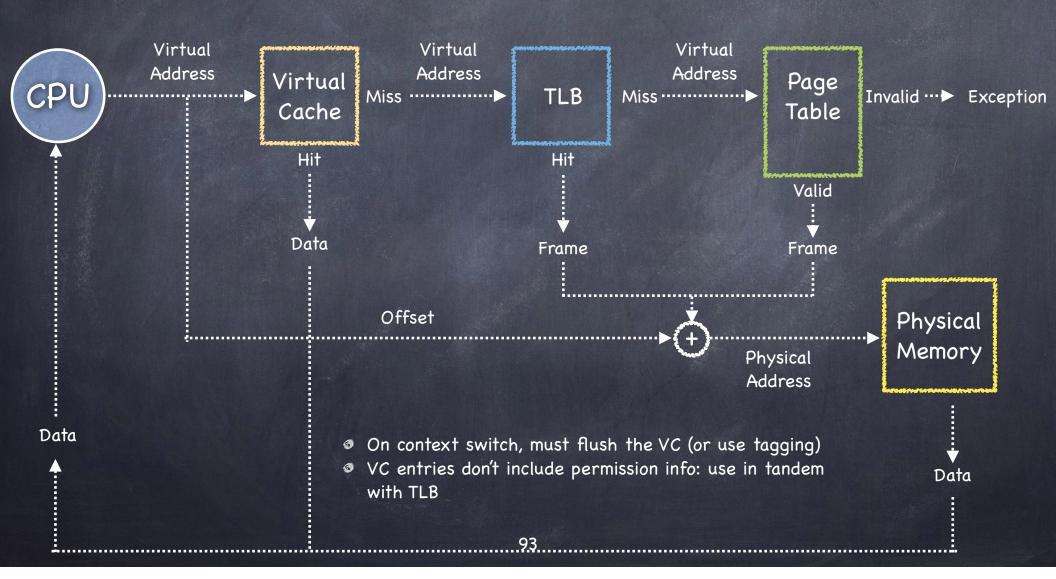
- Hardware-managed TLB
 - + No exception on TLB miss. Instruction just stalls
 - + No extra instruction/data brought into the cache
 - OS has no flexibility in deciding Page Table
- Software-managed TLB
 - + OS can define Page Table organization
 - + More flexible TLB entry replacement policies
 - Slower: exception causes to flush pipeline;
 execute handler; pollute cache

TLB Consistency - I

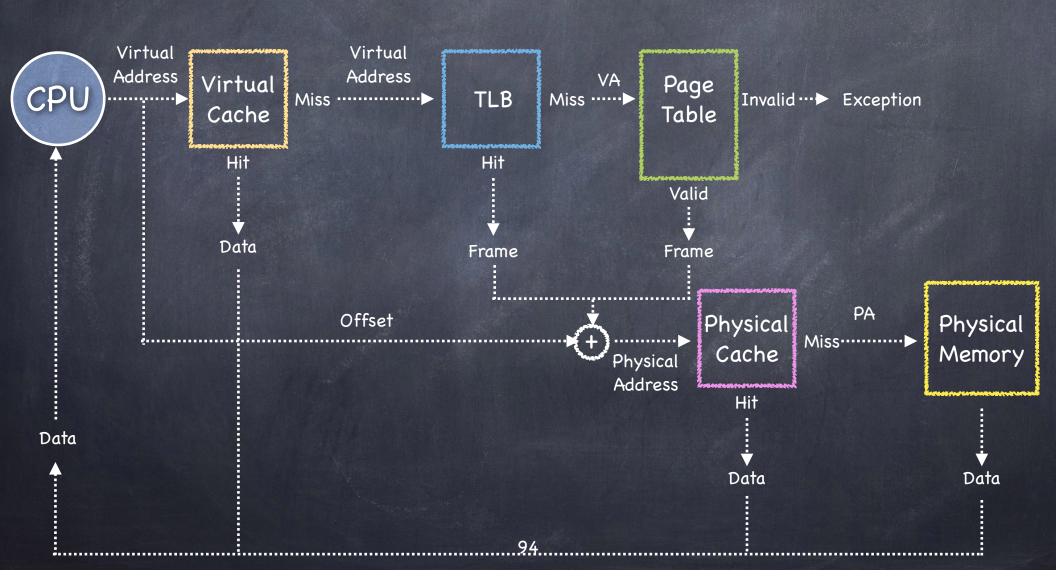
- On context switch
 - □ VAs of old process should no longer be valid
 - □ Change PTBR but what about the TLB?

TLB Consistency - I

- On context switch
 - VAs of old process should no longer be valid
 - □ Change PTBR but what about the TLB?
 - Doption 1: Flush the TLB
 - Deption 2: Add pid tag to each TLB entry

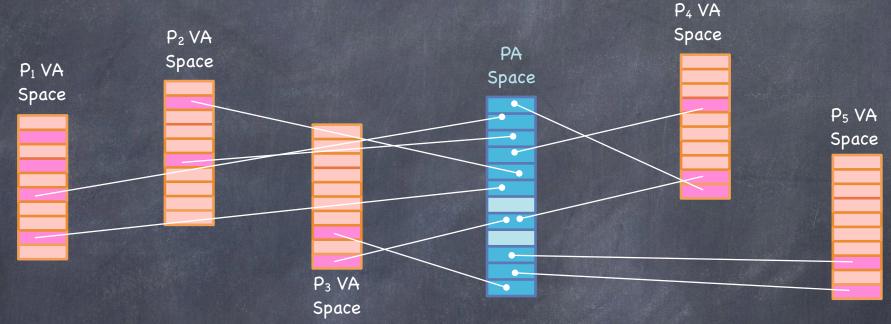

	PID	VirtualPage	PageFrame	Access
TLB Entry	1	0x0053	0x0012	R/W

Ignore entries with wrong PIDs


TLB Consistency - II

- What if OS changes permissions on page?
 - ☐ If permissions are reduced, OS must ensure affected TLB entries are purged
 - ▶ e.g., on copy-on-write
 - □ If permissions are expanded, no problem
 - new permissions will cause an exception and OS will restore consistency

Virtually Addressed Caches

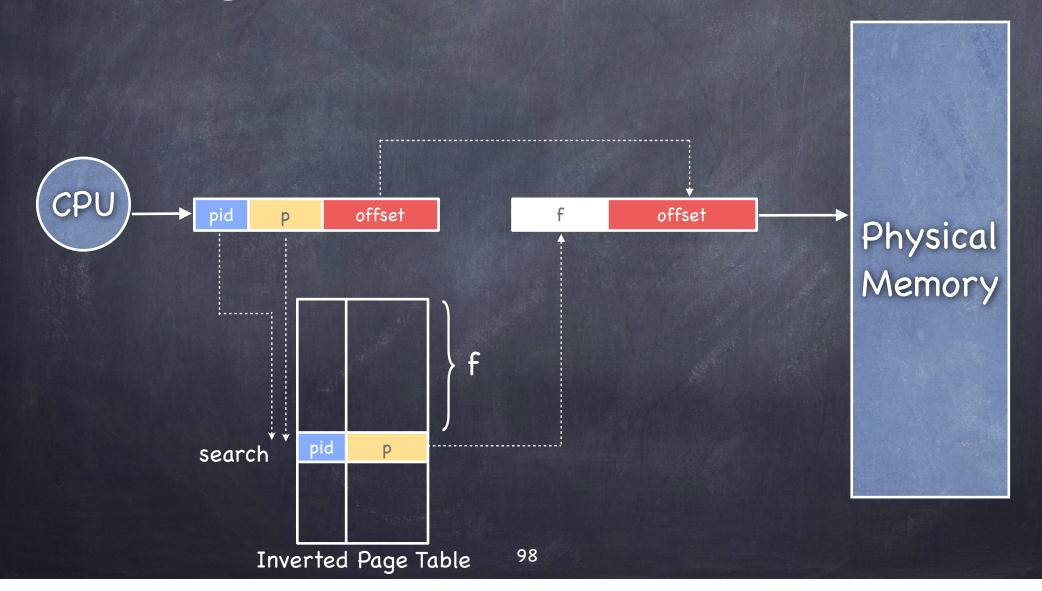

Physically Addressed Caches

Translation and Locality

- Adding a layer of indirection disrupts the spatial locality of caching
- OS may map adjacent virtual pages to frames sharing the same entry in physical addressed cache
 - cache appears smaller
 - performance is unpredictable
- Solution: page coloring
 - frames colored according to cache buckets they will use
 - OS spreads each process' pages across as many colors as possible

A different approach

- So many virtual pages...
- ...comparatively few physical frames
- What if mapping size were proportional to the number of frames, not pages?
 ₉₆

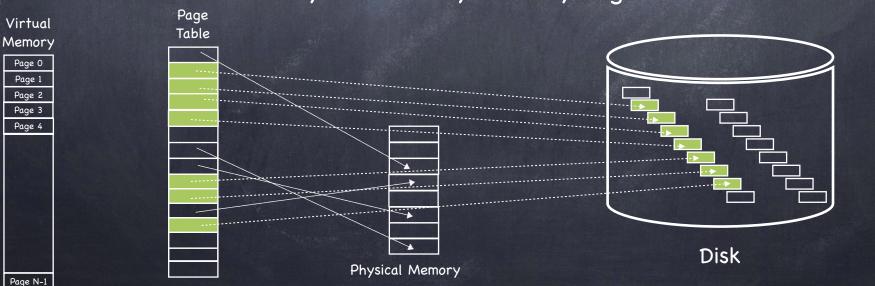

Inverted Page Table

- For each frame, a register containing
 - □ Residence bit
 - is the frame occupied?
 - Number of the occupying page
 - Protection bits
- Searched by page number

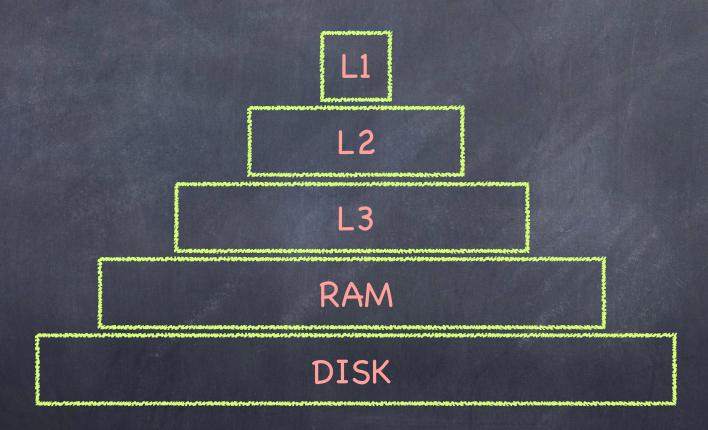
Catch?

- The VAS of different processes may map the same page number to different frames!
 - □ add pid to IPT entry

Basic Inverted Page Table Architecture



Discussion


- Less memory to store page tables
- More time to search page tables
 - □ searching linearly a long list of entries is no fun
 - and using associative memory is too expensive
- Solution: hashing
 - □ hash(page, pid) -> PT entry (or chain of entries)
- Sharing frames does not work
 - In standard paging, multiple PTE could map to same frame, but now single page for each frame...
 - use "segment identifier" instead of pid in inverted PT
 - multiple processes can share the same segment

Virtual Memory

- Each process has the illusion of a large address space
 - 2× bytes for x-bit addressing
- However, physical memory is usually much smaller
 - and we want to run multiple processes concurrently
- How do we give this illusion to multiple processes?
 - □ Virtual Memory: back every memory segment with a file on disk

Processes execute from disk!

RAM is just another layer of cache!

Swapping vs. Paging

Swapping

- □ Loads entire process in memory
- □ "Swap in" (from disk) or "Swap out" (to disk) a process
- □ Slow (for large processes)
- □ Wasteful (might not require everything)
- □ Does not support sharing of code segments
- □ Virtual memory limited by size of physical memory

Paging

- □ Runs all processes concurrently
- □ A few pages from each process live in memory (the rest is on disk)
- □ Finer granularity, higher performance
- □ Large virtual memory supported by small physical memory
- □ Certain pages (e.g., read-only ones) can be shared among processes

A Virtual Page can be...

- Mapped (present bit set in PTE) may
 - may trigger Page Fault
 - □ to a physical frame, with certain r/w/x permissions
- Not mapped (present bit not set in PTE)
 - □ in some physical frame, but not currently mapped
 - or still in the original program file
 - or needing to be zero-filled (heap, BSS, stack)
 - or on backing store (paged or swapped out)
 - or not part of one of the processes' segment
 - Segmentation Fault!

Page Fault

Handling a Page Fault

- Identify page and reason
 - access inconsistent with segment access rights
 - terminate process
 - access a page currently on disk
 - does frame with the code/data already exist?
 - > if not, allocate a frame and load page in
 - access of zero-initialized data (BSS) or stack
 - allocate a frame, initialize all bytes to zero
 - □ access of a COW page
 - ▶ allocate a frame and copy

When a page must be brought in...

- Find a free frame
 - evict one if there are no free frames
- Issue disk request to fetch data for page
- Move "current process" to disk queue
- Context switch to new process
- Update PTE when disk completes
 - frame number, present bit, RWX bits, etc.
- Move "current process" to ready queue

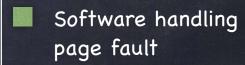
When a page must be swapped out...

- Find all page table entries that refer to old page
 - □ Frame might be shared
 - □ Access Core Map (frames -> pages)
- Set each page table entry to not present (invalid)
- Remove any TLB entries
 - □ "TLB Shootdown": in multiprocessors, TLB entry must be eliminated from the TLB of all processors
- Write page back to disk, if needed
 - Dirty bit in PTE indicates need

Demand Paging

MIPS Style

- 1. TLB Miss
- 2. Exception to kernel
- 3. Page Table walk
- 4. Page fault (present bit not set in Page Table)
- 5. Convert VA to file offset
- 6. Allocate page frame (evict page if needed)
- 7. Initiate disk block read into page frame


- 8. Disk interrupt when DMA completes
- 9. Mark page as present
- 10. Update TLB
- 11. Resume process at faulting instruction
- 12. TLB hit
- 13. Execute instruction
 - Software handling page fault

Demand Paging:

x86 Style

- 1. TLB Miss
- 2. Page Table walk
- Page fault (page not present in Page Table)
- 4. Exception to kernel
- 5. Convert VA to file offset
- 6. Allocate page frame (evict page if needed)
- 7. Initiate disk block read into page frame

- 8. Disk interrupt when DMA completes
- 9. Mark page as present
- 10. Resume process at faulting instruction
- 11. TLB miss
- 12. Page Table walk success!
- 13. TLB updated
- 14. Execute instruction

