CORNELL UNDERGRADUATE RESEARCH BOARD PRESENTS

oICURBx &

APRIL 7TH AT 6:00 PM ET

Featuring distinguished virtual research
presentations from Cornell Undergraduates

Join the webinar at www.cornellcurb.com/curbx!
Password: CURBx S WAPUAZE
:_\ C U)
_ . . 2 RB
Contact Daniel Volshteyn at divéa4@cornell.edu with any questions! 2,

2y cornelicurb.ocom n facebook comicornelicurb @

&8 ,,.w"‘m mf*&wmﬁ?&m Dante Alighieri
| dellepencet punicioni deviciict demeriti . 5§
u:pmnudcllcm loinnioddla i 6
el dmnnmu < T2 05
4 mm&llbm : B ol /
CUVESOUSERE 700 ‘Anniversary

.~.’r‘*"’ -;)j“‘,_, g

b nonl'o

#7 tantera pien oononnf
m.,.u?s,% 5 ,«r:w
340 w%ﬁem%,, gionto .~
. PR terminaua que ;

) r\:dxmmdnpamelooroom iy ?‘f

joﬁn ﬂ\ﬂzumeiswr, g 7D

Cornell Liﬁmry F '3

Memory Management
(Ch. 12-17)

Abstraction
IS our Business

® What I have
o A single (or a finite number) of CPUs

o Many programs I would like to run

® What I want: a Thread

0 Each program has full control of one or more
CPUs

Abstraction
IS our Business

@ What I have
o A certain amount of physical memory

o Multiple programs I would like fo run

» together, they may need more than the available physical memory

@ What I want: an Address Space

o Each program has as much memory as the machines
architecture will allow fo name

o All for itself

Address Space

@ Set of all names used to identify and
manipulate unique instances of a given resource

o memory locations (determined by the size of the
machines word)

» for 32-bit-register machine, the address space
goes from 0x00000000 to OxFFFFFFFF

o memory locations (determined by the number of
memory banks mounted on the machine)

0 phone numbers (XXX) (YYY-YYYY)

o colors: R (8 bits) + G (8 bits) + B (8 bits)

6
LIS

Virtual Address Space:
An Abstraction for Memory

OXFFFFFFFF
® Virtual addresses start at O

@ Heap and stack can be placed far
away from each other, so they can
nicely grow

@ Addresses are all contiguous

@ Size is independent of physical 1
memory on the machine

0x00000000 k.

Physical Address Space:
How memory actually looks

@ Processes loaded in memory at some 0
memory location

e |
Process 2 date,

code, |

o virtual address O is not loaded at
physical address O

@ Multiple processes may be loaded in
memory at the same time, and vet...

@ ...physical memory may be too small Process 1 dat
to hold even a single virtual address e b
Sl ‘ Process 3 data,

space in its entirety ke sdad

0 64-bit, anyone? 512K ki

Address Translation

@ A function that maps (pid, virtual address)
info a corresponding physical address
Virtual Physical

function implemented through
a combination of hw and sw

Advantages:

protection
relocation
data sharing
multiplexing

5e3a07

Q © Q O

9

Address Translation,
Conceptually

A Valid :
4 Who does khis?)
Dat '
A L T » | Physical
Physical Memory
Addre :
v
Data

a1 e e I s e m T TR e TV ta

Memory Management Unit
(MMU)

@ Hardware device

Motorola

: 68000
O Maps virtual addresses

to physical addresses

@ User process
0 deals with virtual addresses

0O never sees the physical address

@ Physical memory
o deals with physical addresses

O never sees the virtual address

Protection

@ The functions used by different processes map their
virtual addresses to disjoint ranges of physical addresses

Relocation

@ The range of the function used by a process can
change over time

13

Relocation

@ The range of the function used by a process
can change over time

@ The same physical address can
map over time to different
physical addresses

0 or the mapping can beM(’rempomrily) undefined

Multiplexing

@ The set of virtual addresses that map to a
given range of physical addresses can change
over time

Multiplexing

@ The set of virtual addresses that map to a
given range of physical addresses can change
over time

Multiplexing

@ The set of virtual addresses that map to a
given range of physical addresses can change
over time

Multiplexing

@ The set of virtual addresses that map to a
given range of physical addresses can change
over time

Multiplexing

@ The set of virtual addresses that map to a
given range of physical addresses can change
over time

Data Sharing

@ Map different virtual addresses of different
processes to the same physical address

5e3a07

Contiguity

@ Contiguous virtual addresses need not map to
contiguous physical addresses

Contiguity

@ Contiguous virtual addresses need not map to
contiguous physical addresses

The Identity Mapping

@ Map each virtual address onto the Max
identical physical address

o Virtual and physical address spaces
have the same size

o Run a single program at a time
» OS can be a simple library

» very early computers

@ Friendly amendment: leave some of
the physical address space for the OS

Text, Data, etc

0 Use loader to relocate process OS

» early PCs
23

More sophisticated
address translation

@ How fo perform the mapping efficiently?

o So that it can be represented concisely?
o So that it can be computed quickly?

o So that it makes efficient use of the limited
physical memory?

o So that multiple processes coexist in physical
memory while guaranteeing isolation?

o So that it decouples the size of the virtual and
physical addresses?

@ Ask hardware for help!

24
5

Exception
Virtual

Base & Bound O==¢

Bound Base

Physical
~\ Address
€58 ‘)

@ Goal: let multiple processes coexist
in memory while guaranteeing isolation

@ Needed hardware
0 two registers: Base and Bound (a.k.a. Limit)

0 Stored in the PCB

@ Mapping
O pa = va + Base

> as long as O < va < Bound

0 On context switch, change B&B (privileged instruction)

25

Base & Bound

MAXsys
@ P;: Base = 1000; Bound = 300
@ P.: Base = 500; Bound = 400
Memory
Exception
1300 —=
CPU 1000 —F
, Virtual Physical
address address
Bound Base
Register 26Register 0

Base & Bound

AXsys
o P.: Base = 1000; Bound = 300 4
@ P.: Base = 500; Bound = 400
Memory
Exception
1300 —=
CPU 1000 —F
| Virtual Physical
P address address
1
300 1000
Bound Base
Register 27Register 0

Base & Bound

AXsys
o P.: Base = 1000; Bound = 300 4
@ P.: Base = 500; Bound = 400
Memory
Exception
1300 —=
CPU 1000 —F
| Virtual Physical
P address address
1
300 1000
Bound Base
Register 28Register 0

Base & Bound

MAXsys
@ P;: Base = 1000; Bound = 300
@ P,: Base = 500; Bound = 400
Memory
Exception
1300 —=
S——
CPU 1150 1000 —F
g Virtual Physical '
address address
o
| Context Switch 300 1000
Base & Bound Bound Base
saved in Pis PCB Register 29Register 4

Base & Bound

MAXsys
@ P;: Base = 1000; Bound = 300
@ P.: Base = 500; Bound = 400
Memory
Exception
1300 —=
CPU 1000 —F
g Virtual Physical
address address
P,
| Context Switch 400 500
Bound Base
Register soRegister 0

On Base & Bound

@ Contiguous Allocation

o contiguous virtual addresses are mapped to
contiguous physical addresses

@ But mapping entire address space o physical
memory

o is wasteful
> lots of free space between heap and stack...

» makes sharing hard

o does not work if the address space is larger
than physical memory

» think 64-bit registers...
31

E Pluribus Unum

@ An address space comprises
multiple segments

o contiguous sets of virtual
addresses, logically connected

> heap, code, stack, (and also
globals, libraries...)

D0 each segment can be of a
different size 1

32

Segmentation:
Generalizing Base & Bound

@ Base & Bound registers to 64KB
each segment

o

o each segment is | ///
independently mapped to a 1o LLLLLLY
set of contiguous addresses | Heap T

in physical memory b 777
%05
» no need to map unused

O etk 4
a
virtual addresses

28KB ,// ////

el Program Code {

10KB} 77757777
QK BYZLL1 222

(not to scale)

Segmentation

@ Goal: Supporting large address spaces (while
allowing multiple processes to coexist in memory)

® Needed hardware

0 two registers (Base and Bound) per segment
» Stored in the PCB

O a segment table, stored in memory, at an address
point to by a Segment Table Register (STBR)

» process STBR value stored in the PCB

34

Segmentation: Mapping

@ How do we map a virtual address to the
appropriate segment?

o Read VA as having two components

» S most significant bits identify the segment
— at most 2°segments

» o remaining bits identify offset within segment
— each segments size can be at most 2° bytes

k = s+o0 bits

e

ST o7 .

35
LIS

Segmentation: Mapping

@ How do we map a virtual address to the
appropriate segment?
o Read VA as having two components

» S most significant bits identify the segment

— at most 2°segments

» o remaining bits identify offset within segment

— each segments size can be at most 2° bytes

k = s+o0 bits

Segmentation: Mapping

@ How do we map a virtual address to the
appropriate segment?
o Read VA as having two components

» S most significant bits identify the segment

— at most 2°segments

» o remaining bits identify offset within segment

— each segments size can be at most 2° bytes

k = s+o0 bits

Segment Table

@ Use s bits to index to the appropriate row of the
segment table

Base Bound (Max 4k) Access
Code 32K 2K Read/Execute
Heap 34K 3K Read/Write
Stack , 28K 3K Read/Write

@ Segments can be shared by different processes

o use protection bits to determine if shared Read only
(maintaining isolation) or Read/Write (if shared, no isolation)

» processes can share code segment while keeping data private

38
LIS

