
Socket programming

Two socket types, depending on transport 
services


UDP: unreliable datagram


TCP: reliable, byte-stream oriented


Application at end host distinguished by 
binding socket to a port number


16 bit unsigned number; 0-1023 are bound to well-
know applications


web server = 80; mail = 25; telnet = 23



Socket Programming 
with UDP

No connection between client and server

no handshaking before sending data

Sender: explicitly attaches destination IP address and 
port number to each packet


Receiver: extracts sender IP address and port number 
from received packet


Best effort: Data may be lost or received out-of-order


UDP provides applications with unreliable transfer of a 
group of bytes (“datagram’) between client and server



Connectionless Demux 
Distinct UDP segments with same dest IP address and 
port, go to the same socket


even if they come from different source IP!


The application must sort things out!
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UDP: Perspective

Speed

no connection establishment (takes time)


no congestion control: UDP can blast away!


Simplicity

no connection state at sender/receiver


Extra work for applications

reordering, duplicate suppression, missing packets…


but some applications may not care!


streaming multimedia: loss tolerant, rate sensitive (want 
constant, fast speeds)



Transmission Control 
Protocol (TCP)

Reliable, ordered communication


Adaptive protocol that delivers good-enough 
performance and handles congestion well


All Web traffic travels over TCP/IP

Enough applications demand reliable ordered 
delivery that they should not have to implement 
their own protocol


..but not really end-to-end (just socket to socket)



Socket Programming 
with TCP

Client

Creates TCP socket with 
server’s IP address and 
port number

Client TCP establishes 
connection to server TCP 
Server 


Server

Contacted by client

Already running

Already created a 
“welcoming socket”

When contacted by client, 
creates a new TCP socket 
to communicate just with 
that client


Socket identified by 4-
tuple


source IP; source port no; 
dest. IP; dest port no.


Server can concurrently 
serve multiple clients



Connection-Oriented 
Demux

Host receives three TCP segments

all destined to IP address B, port 80

demuxed to different sockets through socket’s 4-tuple
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TCP Connections
Initiated by a three-way 
handshake


1.5 RTTs


create shared state on 
both side of connection


both sides know first 
sequence number to be 
used


both sides know other 
side is ready to receive
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Typical TCP Usage

Three round trips to


set up a connection


send a data packet


receive a response


tear down connection


FINs tear down connection


Can be piggybacked on 
Ack
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TCP Segments

Each segment carries SEQ, a unique 
sequence number


initial value of SEQ chosen randomly

SEQ incremented by the data length


for simplicity, 4410 slides assume payloads of size 1


Each segment carries an acknowledgement

acknowledge a set of packets by acking latest 
received SEQ


the acknowledgment is the sequence number of 
the next expected packet!



Reliable Transport
TCP at sender keeps a copy of 
all sent, but unacknowledged, 
packets


Packet resent if ACK does not 
arrive within a timeout


Timeout interval adjusts to 
round-trip delay

Time Time

DATA, seq# = 17

ACK 18

DATA, seq# = 18

DATA, seq# = 18

ACK 19

Timeout

AverageRTT = (1 - α) OldAverageRTT + α LatestRTT

AverageVar = (1 - β) OldAverageVar + β LatestVar

where LatestRTT = (ack_receive_time – send_time),

        LatestVar  = |LatestRTT – AverageRTT|,

        α = 1/8, β = ¼ typically.

Timeout = AverageRTT + 4 x AverageVar

Here is joke about TCP.

Did you get it?

Did you get it?

Did you get it?

Did you get it?

Did you get it?



How long does it take to 
send a segment?

Time between start sending and end receiving

L + S/b sec. (ignoring headers)


Time before ack is received by sender: L sec

assuming acks are small


End-to-end throughput

S/(2L+S/b) bytes/sec [goes to 0 as L grows]

Let
L: one-way latency (sec) 
b: bandwith (bytes/sec) 
S: Size of segment (bytes) 
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Pipelining

Sender allows multiple, “in flight”, yet-to-be-
acknowledged packets (a “window”)


Increases throughput


Needs buffering at sender and receiver

How large should the window be?


What if a packet in the middle is missing?

Data p
acket

Ack packet

Data p
acket

Ack packet



How Much Data 

“Fits” in a Pipe?

Suppose

bandwidth is b bytes/sec


RTT is r seconds


ACK is a small message


Then, can send b·r bytes before receiving 
ack for first byte…


of course, b and r can change over time…



TCP Window, Size 4

ack=18

DATA, seq=17DATA, seq=18DATA, seq=19DATA, seq=20 ack=19
ack=20

ack=21
DATA, seq=21DATA, seq=22DATA, seq=23DATA, seq=24

When first item 
in window is 

acknowledged, 
sender can send 

the 5th item.



TCP Fast Retransmit

ack=18

DATA, seq=17DATA, seq=18DATA, seq=19DATA, seq=20

ack=18

DATA, seq=18

ack=21

ack=18



TCP Congestion Control

Additive Increase/Multiplicative Decrease (AIMD)

window_size++ every RTT if no packet dropped


window_size/2 if packet is dropped

drop detected by acknowledgments


Slowly builds to max bandwidth, and hovers 
there

- Does not achieve maximum bandwidth


+ Shares bandwidth well with other TCP connections


Policy of linear increase, exponential backoff under 
congestion known as TCP friendliness



TCP Window Size
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only due to bandwidth
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TCP Slow Start

Linear Increase

Most file transactions end before that happens…


It takes long to reach window size that matches b·r


Exponential Increase

TCP builds large window quickly by doubling window 
size for each ack received until first loss



TCP Window Size
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TCP Fairness
If k TCP sessions share same bottleneck link of 
bandwidth R, each should have rate R/k


IS AIMD fair?
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TCP Fairness
If k TCP sessions share same bottleneck link of 
bandwidth R, each should have rate R/k


IS AIMD fair?
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Bandwidth halves: half the distance 
between this point and origin

2. Multiplicative Decrease

Converges around equal bandwidth



TCP Summary
Reliable ordered message delivery


Connection oriented, 3-way handshake


Transmission window for better throughput

Timeouts based on link parameters


Congestion control

Linear increase, exponential backoff


Fast adaptation

Exponential increase in the initial phase


