Networking

Basic Network Abstraction

- A process can create "endpoints", used to exchange messages with other processes
- Each endpoint has a unique address
- A message is a byte array
- Processes can:

receive messages on endpoints

send messages on endpoints

Network "protocol"

 Agreement between processes about what makes a well-formed message

Syntax

Layout of bits, bytes, fields, etc

Semantics

what messages, and fields within messages, mean

Example: HTTP get request and response Retrieves information identified by a URI (Universal Resource Identifier)

Layering

The network abstraction is usually layered like Dijkstra's THE Operating system

Layer 5	User ("Not implemented by us" EWD)
Layer 4	User Programs
Layer 3	T/O
Layer 2	OS-Console communication
Layer 1	Memory management (Pager)
Layer 0	Multiprogramming (semaphores, interrupts, scheduling)

Layers support Modularity

Each layer

relies on services from layer below exports services to layer above

Interfaces between layers

Hide implementation details

Ease maintenance, updates

changes in the implementation of layer's service are transparent to the rest of the system

Network Layering

The network abstraction is usually layered

Application

Presentation

Session

Transport

Network

Link

Physical

Proposed 7-Layer ISO/OSI Reference Model (1970s) Application

Transport

Network

Link

Physical

Actual 5-Layer Internet Protocols Stack

6

Internet Protocol Stack

Application	Exchanges messages	HTTP, FTP, DNS
Transport	Transports messages; Exchanges segments	TCP, UDP
Network	Transports segments; exchanges datagrams	IP, ICMP (ping)
Link	Transports datagrams; Exchanges frames	Ethernet, WiFi
Physical	Transport frames; exchanges bits	Wires, signal encoding

Who does what?

Each host has one or more Network Interface Cards (NICs)
 Attached to host's system buses

Combination of hardware, software, firmware

The Big Picture

The Big Picture

End-to-End Argument

Saltzer, Reed & Clark, 1981

- If a function can be completely and correctly implemented only with the knowledge and help of the application standing at the endpoints of the communication system,
- then providing that function as a feature of the communication system itself is not possible
- Sometimes providing an incomplete version as a feature of the communication system itself may be useful as a performance enhancement

An Application of the Argument

Should the network guarantee packet delivery?

Consider transferring a file

Sender reads file from disk & sends it; Receiver reads packets and writes them to disk

Wouldn't it be simpler if network guaranteed delivery? No!

- Application still needs to check file was written to disk
- It needs to implement anyway its own retransmits

EtE Argument's Impact

Occam's Razor for Internet architecture

End-to-end properties are best provided by applications, not by the network

Guaranteed packet delivery, ordered packet delivery, duplicate suppression, security, etc.

 Internet performs simplest packet routing and delivery service

Packets are sent on a best-effort basis

Application		
Transport		
Network		
Link		
Physical		

Application Layer

Application Layer Protocols

ି HTTP

persistent/non persistent; stateless, hence cookies

Electronic Mail

SMTP; POP3; IMAP

O DNS

Manages naming of internet hosts

Naming

People

SSN, NetId, Passport Number

Internet Hosts, Routers

IP Address (32 bit) Ex: 128.84.96.12

Assigned to hosts by their internet service providers (ISPs) Not a unique id, can be reused for a different machine Determines how packets reach the address holder

A virtual "name" Ex: www.cs.cornell.edu Human friendly

How are human friendly names translated into IP addresses?

A name service built above a hierarchical, distributed, autonomous, reliable database

Application level protocol: hosts & name servers communicate to resolve names

Introduced to replace the original Internet naming scheme

a single central master file downloaded everywhere by FTP

Components separated by dot and resolved from right to left

All names are global: they mean the same everywhere in the DNS

DNS Lookup

 To find the IP address of www.cs.cornell.edu (basic protocol)

Query root server to find IP of DNS server for .edu...

which, when queried next, will provide IP of DNS server for cornell.edu

which, when queried next, will provide IP of cs.cornell.edu

which, when queried next, will provide IP of www.cs.cornell.edu

DNS Name Resolution: Iterative

www.cs.cornell.edu

DNS Name Resolution: Recursive

www.cs.cornell.edu

Caching

- Cache entries may be out of date
 bindings are forgotten after TTL
 TLD servers typically cached in local name servers
 Servers cache new bindings they learn
 only eventual consistency
 if binding changes, it may not be learned until TTL
 - update notify proposed IETF standard

Application
Transport
Network
Link
Physical

Transport Layer: UDP & TCP

Transport Services and Protocols

Provide logical communication
 between processes on different hosts

logical communication between hosts is left to the network layer

- Sender packages messages into segments, passes them to the network layer
- Receiver reassembles segments into messages, passes them to the application layer
- Apps can use multiple protocols (e.g., on the Internet, UDP or TCP)

Internet Transport-layer Protocols

TCP (Transmission Control Protocol)

Reliable, in-order delivery Session-based/connection set up byte-stream abstraction Congestion control Flow control

UDP (User Datagram Protocol)

Unreliable, unordered delivery

No connection setup

no-frill extension of best-effort IP (network layer protocol)

Services not available:

delay guarantees

bandwidth guarantees

Applications and their Transport Protocols

Application	Application-Layer Protocol	Transport Protocol
Email	SMTP	тср
Remote terminal access	Telnet	тср
Web	ΗΤΤΡ	тср
File Transfer	FTP	тср
Remote File Server	NFS	Typically UDP
Streaming Multimedia	Proprietary	UDP or TCP
Internet Telephony	Prioprietary	UDP or TCP
Network Management	SNMP	Typically UDP
Routing Protocol	RIP	Typically UDP
Name Translation	DNS	Typically UDP

Socket

One endpoint of a two way communication between two application processes running on a network

Door between process and end-to-end transport protocol

Sending process pushes messages out the socket to the transport protocol

Transport protocol delivers message to the socket at the receiving process

The Big Picture (Sender's Edition)

- Sending application
 - specifies IP address (to identify host) and port of destination
 - uses socket bound to a source port
- Transport layer
 - breaks application message into smaller chunks add to each transport-layer header
- Network layer
 - adds network layer header (with IP address)

The Big Picture (Receiver's Edition)

Network layer

removes network layer header (with IP address)

Transport layer

removes from each segment transport-layer header

reassembles application message from segment

Receiving application

receives message on destination port bound to socket

Multiplexing at the Sender

Handles data from multiple sockets

A

Adds transport header (later used for demultiplexing)

Demultiplexing at the Receiver

Handles data from multiple sockets

A

Adds transport header (later used for demultiplexing)

