The Process

A running program

(Chapters 2-6)

From Program fo Process

@ To make the programs code and data come alive
0 need a CPU
0 need memory — the process’ address space
» for data, code, stack, heap
0 need registers
» PC, SP, regular registers
o need access to 1/0

> list of open files

- s p—y ». 4

A First Cut at the API

® Create

0 causes the OS to create a new process

@ Destroy

o forcefully terminates a process
@ Wait (for the process to end)

@ Other controls

0 e.g. to suspend or resume the process

® Status

0 running? suspended? blocked? for how long?

How the OS Keeps Track
of a Process

Process Control

@ A process has code Block
o OS must track program counter R

Stack Pir

Registers

@ A process has a stack PID
uIDd

Priority :
List of open files
Process status

@ OS stores state of process Kernel stack ptr

o OS must track stack pointer

in Process Control Block (PCB)

0 Data (program instructions, stack & heap)
resides in memory, metadata is in PCB

You'll Never Walk Alone

@ Machines run (and thus OS must manage)
multiple processes

o how should the machines resources be mapped
to these processes?

@ OS as a referee... (K\

You'll Never Walk Alone

@ Machines run (and thus OS must manage)
multiple processes

o how should the machines resources be mapped

to these processes? 2, ¥
X

o Enter the illusionist! _<g"¢_

0 give every process the illusion of running

on a private CPU A
5 the CPU
» which appears slower than the machines J
0 give every process the illusion of running *
. Virtualize
on a private memory >
memory

> which may appear larger (??) than the machines.

Isolating Applications

@ Buggy apps can crash
other apps

@ Buggy apps can crash OS

@ Buggy apps can hog all
resources

_ Operating System

@ Malicious apps can violate

Reading and writing memory, privacy of other apps

managing resources, accessing I/0...

@ Malicious apps can
change the OS

The Process, Refined

@ A running program with
restricted rights

@ The enforcing mechanism
must not hinder functionality

o still efficient use of hardware

OS o enable safe communication

The Process, Refined

@ A running program with
restricted rights

@ The enforcing mechanism
must not hinder functionality

o still efficient use of hardware

o enable safe communication

Mechanism and Policy

@ Mechanism

0O enables a functionality

@ Policy

0 determines how that funtionality should be
used

Mechanisms should not determine policies!

Special 49

@ The process abstraction is enforced by the
kernel

0 a part of the OS entrusted with special
powers

O not all the OS is in the kernel
> e.g., widgets libraries, window managers etc

> why not? robustness

How can the OS
Enforce Restricted Rights?

@ Easy: kernel interprets each instruction!

O slow

0 many instructions are safe:
do we really need to
involve the OS?

How can the OS
Enforce Restricted Rights?

Mechanism: Dual Mode Operation

o hardware to the rescue: use a
bit to enable two modes of

§ Srvevmmmmsnssar s §

g 44 execution:

i = i :

| GERy | > in user mode, processor only

i i executes a limited (safe) set of
i Il instructions

> in kernel mode, no such restriction
o only OS kernel trusted to run in

kernel mode
Think of Kernel as a “‘library with privileges”

Amongst our weaponry are
such diverse elements as...

D Privileged instructions

> in user mode, no way fo execute potentially unsafe
instructions

0 Memory isolation

> in user mode, memory accesses outside a process’
memory region are prohibited

o Timer interrupfs

» ensure Kernel will periodically regain control from
running process

I. Privileged instructions

@ Set mode bit

@ I/O ops

@ Memory management ops
@ Disable interrupts

@ Set timers

@ Halt the processor

I. Privileged instructions

@ But how can an app do I/0 then?

0 system calls achieve access to kernel mode
only at specific locations specified by OS

@ Executing a privileged instruction while in
user mode (naughty naughty...) causes a
processor exception....

o..which passes control to the kernel

I. Privileged instructions

@ Set mode bit

@ I/O ops

@ Memory management ops

@ Disable interrupts

@ Set timers

@ Halt the processor

@ Set location of interrupt vector

Crossing the line

mode bit =1

user process executing calls system call return from system call

trap o mode bit :=1

mode bit := 0 | return

- | execute system call

II. Memory Protection

Step 1: Virtualize Memory

@ Virtual address space: set of memory e
addresses that process can "touch” o

o CPU works with virtual addresses

@ Physical address space: set of memory
addresses supported by hardware

Virtual
address

SPGCC Code

II. Memory Isolation

Step 2: Address Translation

@ Implement a function mapping
(pid, virtual address) into physical address

Virtual Physical

Advantages:

@ isolation
@ relocation S
@ data sharing
@ multiplexing
LIS

Isolation

@ At all times, functions used by different processes
map to disjoint ranges — aka “Stay in your room!”

Relocation

@ The range of the function used by a process
can change over time

Relocation

@ The range of the function used by a process
can change over time —“"Move to a new room!”

Data Sharing

® Map different virtual addresses of distinct
processes to the same physical address —
"Share the kitchen!”

5e3a07

Multiplexing

@ Create illusion of almost infinite memory by
changing domain (set of virtual addresses) that
maps to a given range of physical addresses —
ever lived in a studio?

Multiplexing

@ The domain (set of virtual addresses) that map
to a given range of physical addresses can
change over time

Multiplexing

@ The domain (set of virtual addresses) that map
to a given range of physical addresses can
change over time

Multiplexing

@ The domain (set of virtual addresses) that map
to a given range of physical addresses can
change over time

Multiplexing

@ The domain (set of virtual addresses) that map
to a given range of physical addresses can
change over time

More Multiplexing

@ At different times, different processes can map
part of their virtual address space into the
same physical memory — change tenants!

More Multiplexing

@ At different times, different processes can map
part of their virtual address space into the
same physical memory — change tenants!

A simple mapping mechanism:
Base & Bound

MAXsys

Memory
Exception

Logical no
addresses

Physical 1565
@) dddresses _[pS physical
>;%j%§% address
(S Pﬂ(‘?

CPU

e St
Ve
5 ves

j(0]0]0)

10]0) 1(00]0,

Bound Base
Register Register -

On Base & Limit

@ Contiguous Allocation: contiguous virtual
addresses are mapped to contiguous physical
addresses

@ Isolation is easy, but sharing is hard

@ Say I have ftwo copies of Emacs: want to
share code, but have heap and stack distinct...

@ And there is more...
o Hard to relocate

® Hard to account for dynamic changes in both
heap and stack

III. Timer Interrupts

® Hardware timer

0 can be set fo expire affer specified delay
(time or instructions)

o when it does, control is passed back to the
kernel

@ Other interrupts (e.g. I/0 completion) also
give control to kernel

Inferrupt Management

* » inferrupt
controller |

inferrupt

TN

Interrupt controllers implements interrupt priorities:

0 Interrupts include descriptor of interrupting device

o Priority selector circuit examines all inferrupting devices,
reports highest level to the CPU

0 Controller can also buffer interrupts coming from different
devices

Inferrupt Management

$ » interrupt
interrupt controller

Maskable interrupts
D can be turned off by the CPU for critical processing

Nonmaskable interrupts

0 indicate serious errors (power out warning,
unrecoverable memory error, etc.)

Types of Interrupts

Exceptions

@ process missteps (e.g. division by zero)

@ attempt to perform a privileged instruction
o sometime on purpose! (breakpoints) s OO

@ synchronous/non-maskable | [System calls/’rraps

@ user program requests |
OS service

Iﬁférfupfs @ synchronous/non-
& HW device requires OS service | ., ,_ -

o timer, I/O device, interprocessor

@& asynchronous/maskable

