
Old Friends

Remember fork()?
int main(int argc, char *argv[]){

int fd = open(“file.txt”, O_RDONLY);
assert (fd >= 0);
int rc = fork();
if (rc ==0) { /* child */

rc = lseek(fd, 10, SEEK_SET);
printf(“child: offset %d\n”, rc);

} else if (rc > 0) { /* parent */
(void) wait(NULL);
printf(“parent: offset %d\n”,

(int) lseek(fd, 10, SEEK_CUR));
}
return 0;

}

What does this code print?
child: offset 10
parent: offset 20

Parent

Child

Open File

Table

File
Descriptors

File
Descriptors

refcnt: 2
off: 20
inode 52874

7

7

The Directory

The directory holds mappings between human-
friendly names (HFNs) and inode numbers

It stores two types of mappings:

Hard links

map a file’s HFN (its local path) to the file’s inode number

Symbolic (soft) links

Logically, map a file’s HFN (its local path) to the HFN of a
different file

Implementation: maps a file’s HFN to the number of an
inode that contains the HFN of a different file

Hard links
Creating file foo adds a hard link for file foo in the
file’s directory

 Command ln oldpath newpath
adds to the directory for HFN newpath a hard link mapping
newpath to the inode number of the file with HFN oldpath

calls int link(const char *oldpath, const char *newpath)

Removing a file through the rm [file] command invokes
a call to int unlink(const char *pathname)

removes from directory the hard link between pathname
and corresponding inode number

File’s inode stores the number of hard links to it

inode reclaimed (file deleted) only when link count = 0; if
file opened, wait to reclaim until file is closed

Hard link No-Nos

Creating a hard link to a directory

may create a cycle in the directory tree!

Creating a hard link to files in other volumes

inode numbers are unique only within a single file
system

Example

inode of the
current directory

inode of the
parent directory

Example

…368

~/example/cornell

inode

Example

…368

~/example/cornell

~/example/bigred

Example

…368

~/example/cornell

~/example/bigred

~/b
esti

vy

Example

~/example/bigred

~/b
esti

vy

~/example/cornell

…368

Example
~/b

esti
vy

…368

Symbolic (Soft) links
More flexible than hard links

can link to a directory

can link to files in another volume

A map between pathnames

to link newpathname to existingpathname for file inode1:

create a hard link between newpathname and new file inode2

store in inode2 the existingpathname for inode1

so, a symbolic link is really a file (inode2 in our example) of
a third type

neither a regular file nor a directory

Created using ln, but with the -s flag

Example …367

~/example/cornell

Example …367

~/example/cornell ~/example/bigred

Example …367

~/example/cornell ~/example/bigred

~/bestiv
y

~/highabove

…138

Example …367

~/example/cornell ~/example/bigred

~/bestiv
y

~/highabove

…138

Example …367

~/example/cornell ~/example/bigred

~/bestiv
y

~/highabove

…138

Example …367

~/example/cornell ~/example/bigred

~/bestiv
y

~/highabove

…138

Example …367

~/example/bigred

~/bestiv
y

~/highabove

…138

Example …367

~/example/bigred

~/bestiv
y

~/highabove

…138

Permission Bits

File bestivy

leading - says bestivy is a regular file

d is for directory; l is for soft link

Next nine characters are permission bits

rwx for owner, group, everyone

owner can read and write; group and others can just read

x set in a regular file means means file can be executed

x set in a directory that user/group/everybody is allow to cd to that
directory

can be set using chmod

File System Layout
File System is stored on disks

disk can be divided into one or more partitions

Sector 0 of disk: Master Boot Record (MBR). It contains:

bootstrap code (loaded and executed by firmware)

partition table (addresses of where partitions start & end)

First block of each partition has boot block

loaded by executing code in MBR and executed on boot

MBR

Free Space MgmtBOOT BLOCK I-NodesSUPERBLOCK Files & Directories

Partition

Table

PARTITION 1 PARTITION 2 PARTITION 3 PARTITION 4

Peeking Inside
Persistent storage modeled as a sequence of N blocks

from 0 to N-1

in this example , 64 blocks, each 4KB

0 7 8 15 16 23 24 31

32 39 40 47 48 55 56 63

some blocks store data

Peeking Inside
Persistent storage modeled as a sequence of N blocks

from 0 to N-1

in this example , 64 blocks, each 4KB

D D

0 7 8 15 16 23 24 31

32 39 40 47 48 55 56 63

D D

some blocks store data

other blocks store metadata

an array of inodes

at 256 bytes, 16 per block: with 5 blocks for inodes, file system
can have up to 80 files

data blocks data blocks

data blocksdata blocksdata blocksdata blocks

data blocks

Peeking Inside
Persistent storage modeled as a sequence of N blocks

from 0 to N-1

in this example , 64 blocks, each 4KB

some blocks store data

I I I I I D

0 7 8 15 16 23 24 31

40 47 48 55 56 63

D D

inodes

32 39

other blocks store metadata

an array of inodes

at 256 bytes, 16 per block: with 5 blocks for inodes, file system
can have up to 80 files

data blocks data blocks

data blocksdata blocksdata blocks

data blocks

data blocks

Peeking Inside
Persistent storage modeled as a sequence of N blocks

from 0 to N-1

in this example , 64 blocks, each 4KB

some blocks store data

i d I I I I I D

0 7 8 15 16 23 24 31

40 47 48 55 56 63

D D

32 39

free

lists

other blocks store metadata (remember stat()?)

an array of inodes

at 256 bytes, 16 per block: with 5 blocks for inodes, file system
can have up to 80 files

bitmaps tracking free inodes and data blocks;

data blocks data blocks

data blocksdata blocksdata blocks

data blocks

data blocks

inodes

Peeking Inside

some blocks store data

B S I d I I I I I D

0 7 8 15 16 23 24 31

40 47 48 55 56 63

D D

32 39

data blocks data blocks

data blocksdata blocksdata blocksdata blocks

bitmaps tracking free inodes and data blocks; Superblock; Boot block

other blocks store metadata (remember stat()?)

an array of inodes

at 256 bytes, 16 per block: with 5 blocks for inodes, file system
can have up to 80 files

Persistent storage modeled as a sequence of N blocks

from 0 to N-1

in this example , 64 blocks, each 4KB

data blocksinodes
free

lists

The uperblock

One logical superblock per file system

at a well-known location

contains metadata about the file system, including

how many inodes

how many data blocks

where the inode table begins

may contain info to manage free inodes/data blocks

read first when mounting a file system

Storing Files

Files can be allocated in different ways

Contiguous allocation

all bytes together, in order

Linked Structure

Each points to the next block

Indexed Structure

Index block, pointing to many other blocks

Which is best?

For sequential access? Random access?

Large files? Small files? Mixed?

Contiguous Allocation

All bytes together, in order

Simple: only need start block and size

Efficient: one seek to read entire file

Fragmentation: external, and can be serious

Usability: User need to know file’s size at time of
creation

file1 file2 file3 file4 file5

Used in CD-ROm, DVDs

Linked List Allocation

Each file is stored as a linked list of blocks

first word of each block points to next block

the rest of the block is data

File
block 0

next

File
block 1

next

File
block 2

next

File
block 3

next

File
block 4

next

File A

Physical

Block 7 8 33 17 4

Space utilization: no external fragmentation

Simplicity: only need to find first block of each file

Performance: random access is slow

Implementation: blocks mix data and metadata

File Allocation Table
(FAT) FS

Decouple data and metadata

File
block 0

next

File
block 1

next

File
block 2

next

File
block 3

next

File
block 4

next

7 8 33 17 4

Microsoft, late 70s
still widely used today

thumb drives, camera cards, CD ROMs

DataMetadata

not to scale!

4

17

7
8

33

FAT File system

file 9 block 3

file 9 block 0
file 9 block 1
file 9 block 2
file 12 block 0

file 12 block 1

file 9 block 4

FAT Data blocks
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

20
19

Index Structures

File Allocation Table (FAT)

array of 32-bit entries

one entry per block

file represented as a linked list
of FAT entries

file # = index of first FAT entry

Free space map

If data block i is free,
then FAT[i] = 0

find free blocks by
scanning FAT

Locality heuristics

As simple as next fit:

scan sequentially from
last allocated entry and
return next free entry

Can be improved through
defragmentation

0
0
0

0
0
0
0
0

0
0
0

0

0
0

*

*

Directory

Maps file name to FAT index

Directory

jack.txt 12

jill.txt 9

FAT File system

Advantages

simple!

per file, needs
only start block

widely supported

no external
fragmentation

no conflating data
and metadata in
the same block

Disadvantages

Poor locality

many file seeks unless entire FAT
in memory

1 TB (240 bytes) disk, 4kb (212
bytes block, 228 FAT entries; at
4B/entry, 1 GB (!)

Poor random access

needs sequential traversal

Limited access control

no file owner or group ID

any user can read/write any file

No support for hard links

Volume and file size are limited

FAT entry is 32 bits, but top 4 are
reserved

no more than 228 blocks

with 4kB blocks, at most 1TB FS

file no bigger than 4GB

No support for advanced reliability
techniques

file 9 block 3

file 9 block 0
file 9 block 1
file 9 block 2
file 12 block 0

file 12 block 1

file 9 block 4

FAT Data blocks
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

20
19

0
0
0

0
0
0
0
0

0
0
0

0

0
0

*

*

