RAID

Redundant Array of Inexpensive* Disks

* In industry, "inexpensive" has been replaced by "independent" :-)

E Pluribus Unum

- Implement the abstraction of a faster, bigger and more reliable disk using a collection of slower, smaller, and more likely to fail disks
 - different configurations offer different tradeoffs
- Key feature: transparency
 - □ The Power of Abstraction[™]
 - □ to the OS looks like a single, large, highly performant and highly reliable single disk (a SLED, hopefully with lower-case "e"!)
 - a linear array of blocks
 - mapping needed to get to actual disk
 - cost: one logical I/O may translate into multiple physical I/Os
- In the box:
 - microcontroller, DRAM (to buffer blocks) [sometimes non-volatile memory, parity logic]

Failure Model

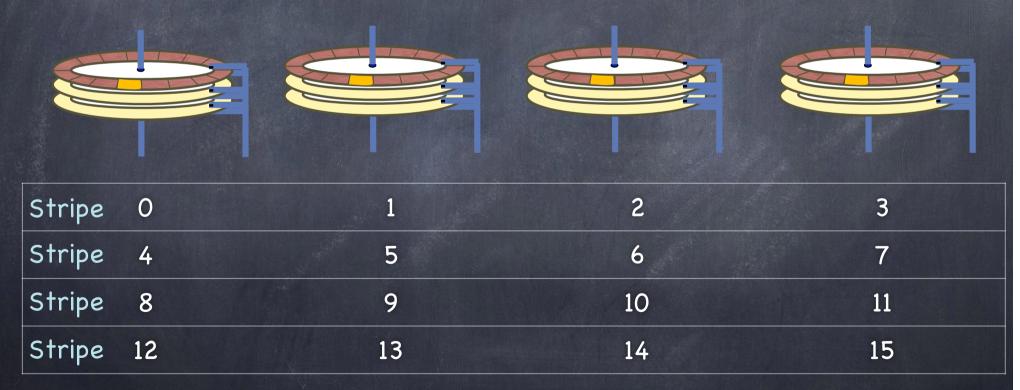
- RAID adopts the strong, somewhat unrealistic Fail-Stop failure model (electronic failure, wear out, head damage)
 - D component works correctly until it crashes, permanently
 - b disk is either working: all sectors can be read and written
 - or has failed: it is permanently lost
 - failure of the component is immediately detected
 - RAID controller can immediately observe a disk has failed and accesses return error codes
- In reality, disks can also suffer from isolated sector failures
 - Permanent: physical malfunction (magnetic coating, scratches, contaminants)
 - □ Transient: data is corrupted, but new data can be successfully read from/written to sector

How to Evaluate a RAID

Capacity

□ what fraction of the sum of the storage of its constituent disks does the RAID make available?

Reliability


□ How many disk faults can a specific RAID configuration tolerate?

Performance

□ Workload dependent

RAID-0: Striping

Spread blocks across disks using round robin

- + Excellent parallelism

- Worst-case positioning time
 - ▶ wait for largest across all disks

RAID-0: Striping (Big Chunk Edition)

Spread blocks across disks using round robin

Stripe	0	2	4	6
	1	3	5	7
Stripe	8	10	12	14
	9	11	13	15

+ improve positioning time

- decrease parallelism

RAID-0: Evaluation

Capacity

□ Excellent: N disks, each holding B blocks support the abstraction of a single disk with NxB blocks

Reliability

- Poor: Striping reduces reliability
 - Any disk failure causes data loss

Performance

- □ Workload dependent, of course
- □ We'll consider two workloads
 - Sequential: single disk transfers 5 MB/s
 - Random: single disk transfer R MB/s

RAID-0: Performance

- Single-block read/write throughput
 - about the same as accessing a single disk
- Latency
 - □ Read: T ms (latency of one I/O op to disk)
 - □ Write: T ms
- Steady-state read/write throughput
 - □ Sequential: N x S MB/s
 - □ Random: N x R MB/s

RAID-1: Mirroring

Each block is replicated twice

Read from any

Write to both

RAID-1: Evaluation

Capacity

Poor: N disks of B blocks yield (N x B)/2 blocks

Reliability

☐ Good: Can tolerate the loss (not corruption!) of any one disk

Performance

- □ Fine for reads: can choose any disk
- Poor for writes: every logical write requires writing to both disks
 - suffers worst seek+rotational delay of the two writes

RAID-1: Performance

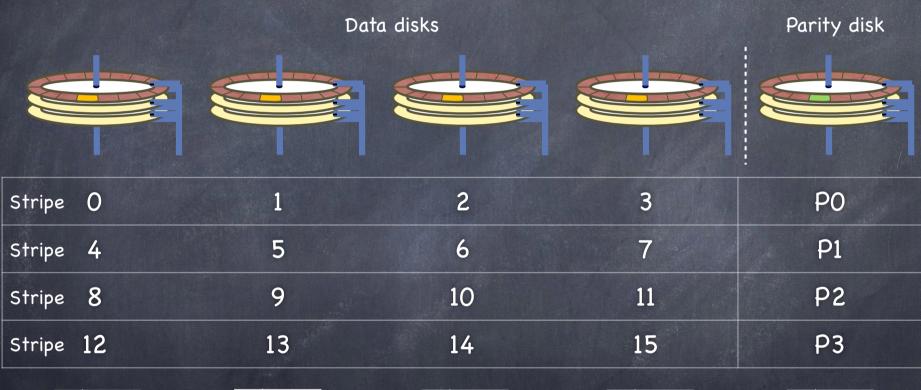
- Steady-state throughput
 - □ Sequential Writes: N/2 x S MB/s
 - ▶ Each logical Write involves two physical Writes
 - □ Sequential Reads: as low as N/2 x S MB/s

0	0	1	1
2	2	3	3
4	4	5	5
6	6	7	7

Suppose we want to read 0, 1, 2, 3, 4, 5, 6, 7

RAID-1: Performance

- Steady-state throughput
 - Sequential Writes: N/2 x S MB/s
 - ▶ Each logical Write involves two physical Writes
 - Sequential Reads: as low as N/2 x S MB/s


0	0	1	1
2	2	3	3
4	4	5	5
6	6	7	7

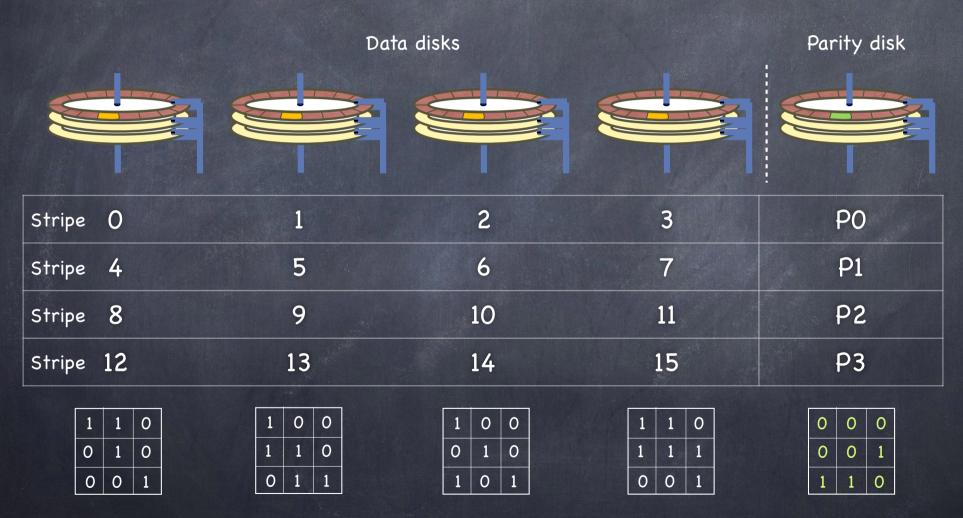
Suppose we want to read 0, 1, 2, 3, 4, 5, 6, 7

Each disk only delivers half of his bandwidth: half of its blocks are skipped!

- □ Random Writes: N/2 x R MB/s
 - ▶ Each logical Write involves two physical Writes
- □ Random Reads: N x R MB/s
 - ▶ Reads can be distributed across all disks
- Latency for Reads and Writes: T ms

RAID-4: Block Striped, with Parity

1	1	0	
0	1	0	
0	0	1	


1	0	0	
1	1	0	
0	1	1	ACCURATION OF THE PERSON NAMED IN

1	0	0	STATE
0	1	0	
1	0	1	

1	1	0
1	1	1
0	0	1

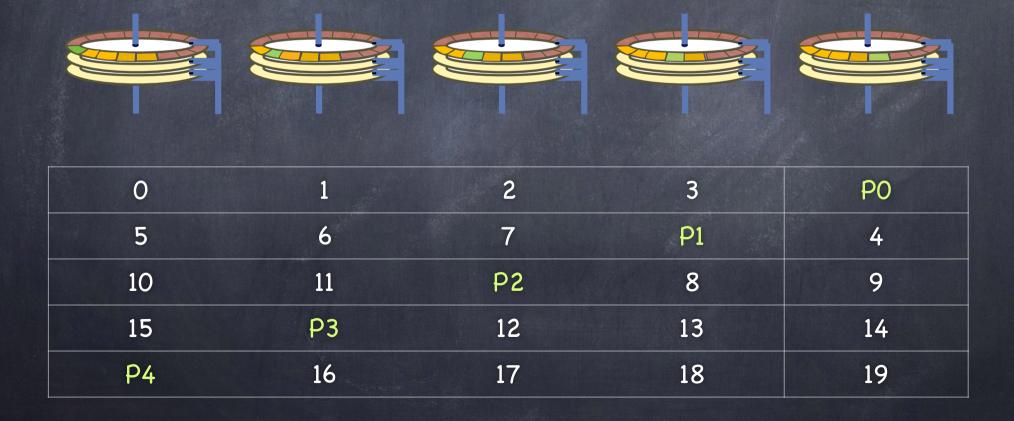
0	0	0
0	0	1
1	1	0

RAID-4: Block Striped, with Parity

Disk controller can identify faulty disk

single parity disk can detect and correct errors

RAID-4: Evaluation


- Capacity
 - □ N disks of B blocks yield (N-1) x B blocks
- Reliability
 - Tolerates the failure of any one disk
- Performance
 - □ Fine for sequential read/write accesses and random reads
 - □ Random writes are a problem!

RAID-4: Performance

- □ Sequential Reads: (N-1) x S MB/s
- Sequential Writes: (N-1) x S MB/s
 - > compute & write parity block once for the full stripe
- □ Random Read: (N-1) x R MB/s
- □ Random Writes: R/2 MB/s (N is gone! Yikes!)
 - need to read block from disk and parity block
 - Compute P_{new} = (B_{old} XOR B_{new}) XOR P_{old}
 - Write back Bnew and Pnew
 - ▶ Every write must go through parity disk, eliminating any chance of parallelism
 - ▶ Every logical I/O requires two physical I/Os at parity disk: can at most achieve 1/2 of its random transfer rate (i.e. R/2)
- Latency: Reads: T ms; Writes: 2T ms

RAID-5: Rotating Parity (avoids the bottleneck)

Parity and Data distributed across all disks

RAID-5: Evaluation

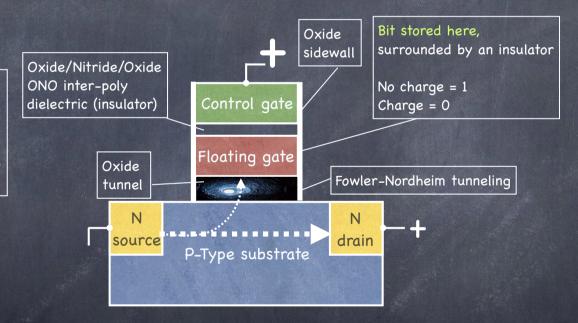
- Capacity & Reliability
 - □ As in Raid-4
- Performance
 - Sequential read/write accesses as in RAID-4
 - \triangleright (N-1) x S MB/s
 - Random Reads are slightly better
 - \triangleright N x R MB/s (instead of (N-1) x R MB/s)
 - Random Writes much better than RAID-4: R/2 x N/2
 - as in RAID-4 writes involve two operations at every disk: each disk can achieve at most R/2
 - ▶ but, without a bottleneck parity disk, we can issue up to N/2 writes in parallel (each involving 2 disks)

SSDs

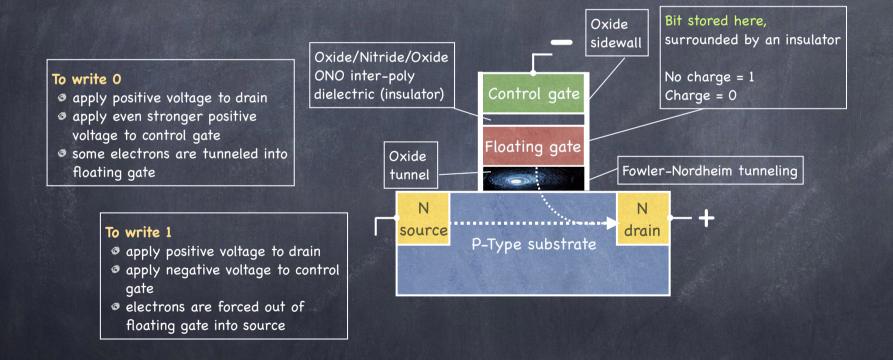
Why care?

HDD

- Require seek, rotate, transfer on each I/O
- Not parallel (one active head)
- Brittle (moving parts)
- Slow (mechanical)
- Poor random I/O (10s of ms)


SSD

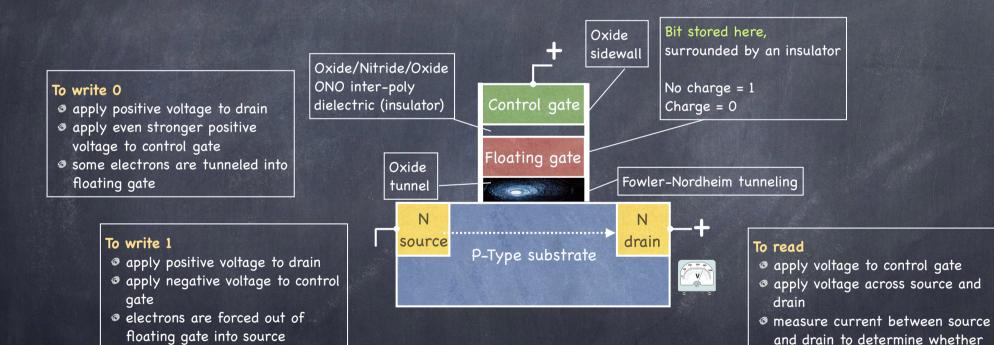
- No seeks
- Parallel
- No moving parts
- Random reads take 10sof μs
- Wears out!


Flash Storage

To write 0

- apply positive voltage to drain
- apply even stronger positive voltage to control gate
- some electrons are tunneled into floating gate

Flash Storage



Flash Storage

electrons in gate

□ if electrons in floating gate, must apply higher voltage ato control gate to have current □ measured current can encode

more than a single bit

The Cell

- Single-level cells
 - □ faster, more lasting (50K to 100K program/erase cycles), more stable
 - □ 0 means charge; 1 means no charge
- Multi-level cells
 - □ can store 2, 3, even 4 bits
 - □ cheaper to manufacture
 - □ wear out faster (1k to 10K program/erase cycles)
 - □ more fragile (stored value can be disturbed by accesses to nearby cells)

The SSD Storage Hierarchy

Cell
1 to 4
bits

Page
2 to 8 KB
not to be
confused with
a VM page

Block
64 to 256
pages
not to be confused
with a disk block

Plane/Bank
Many blocks
(Several Ks)

Flash Chip
Several banks that
can be accessed
in parallel

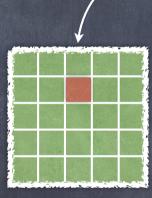
Basic Flash Operations

- Read (a page)
 - □ 10s of µs, independent of the previously read page
 - great for random access!
- Erase (a block)
 - sets the entire block (with all its pages) to 1 (!)
 - □ very coarse way to write 1s...
 - □ 1.5 to 2 ms (on a fast SLC)
- Program (a page)
 - □ can change some bits in a page of an erased block to 0
 - \square 100s of μ s
 - □ changing a 0 bit back to 1 requires erasing the entire block!

Banks

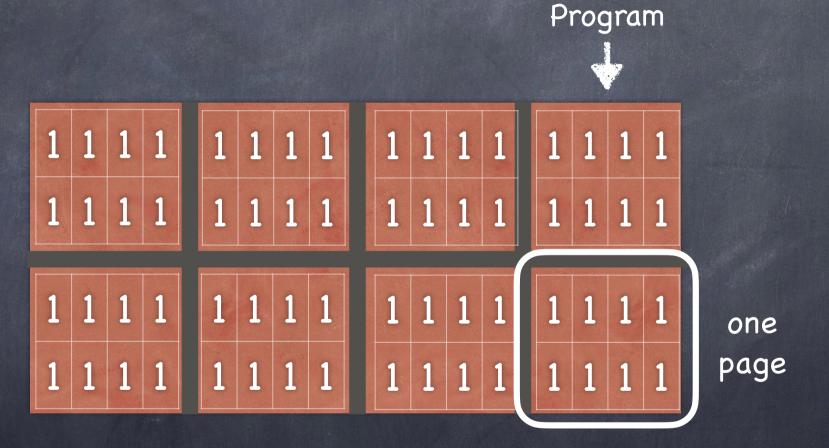
Bank O

Bank 1


Bank 2

Bank 3

Banks

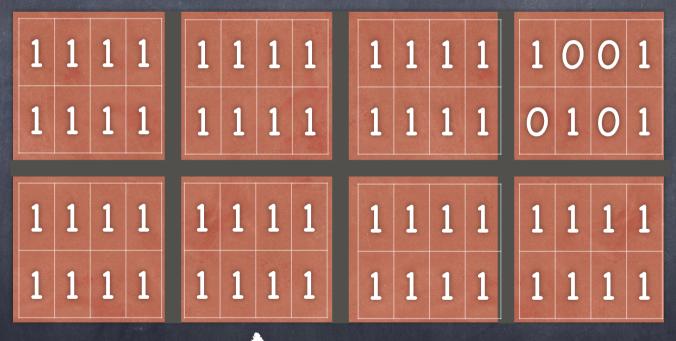

Each bank contains many blocks

Bank O

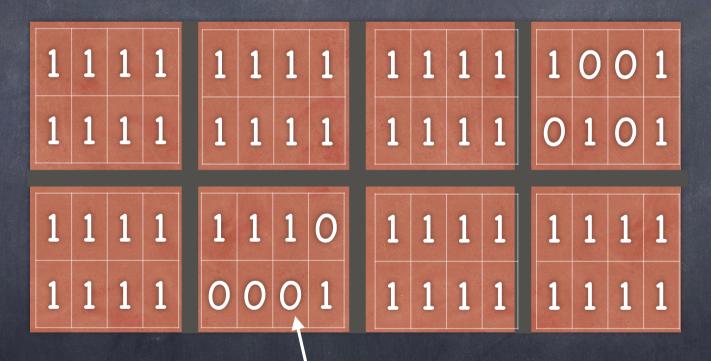
Bank 2

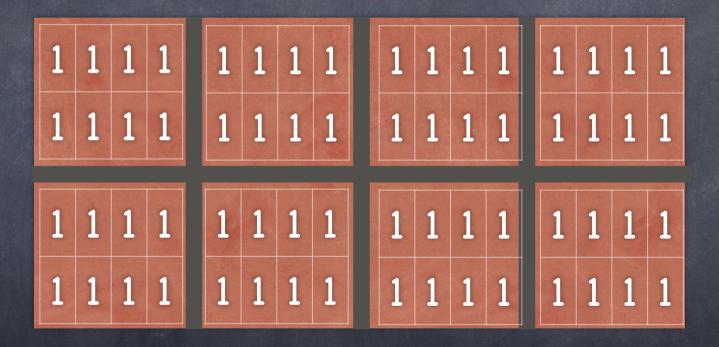
Bank 3

After an Erase, all cells are discharged (i.e., store 1s)


Program

1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Section 1															
1															


Program


Erase (!)

If now we want to set this bit to 1, we need to erase the entire block!

Modified pages must be copied elsewhere, or lost!

Erase

Wear Out

Every erase/program cycle adds some charge to a block; over time, hard to distinguish 1 from 0!

Performance

HDD

Flash

HDD

Flash

Throughput

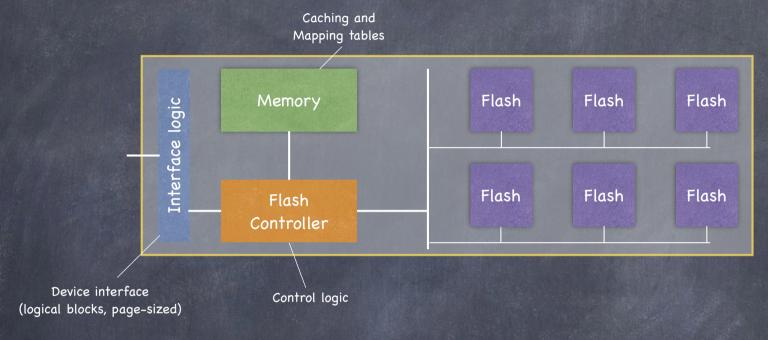
Latency

read

write

read sector	read page
write sector	program page (O's)
	erase block (1's)
	Same of the

≈ 130MB/s (sequential)	≈200MB/s (random or sequential)
≈ 10ms	read 25µs program 200-300µs erase 1.5-2 ms


Using Flash Memory

Need to map reads and writes to logical blocks to read, program, and erase operations on flash

Flash Translation Layer (FTL)

From Flash to SSD

Flash Translation Layer

- □ tries to minimize
 - write amplification: [write traffic (bytes) to flash chips write traffic (bytes) from client to SSD]
 - wear out: practices wear leveling
 - disturbance: writes pages in a block in order, low to high

FTL through Direct Mapping

- $oldsymbol{\circ}$ Just map logical disk block i to physical page i
 - □ reads are fine (yahoo!)
 - \square write to logical block i, however, involves
 - \triangleright reading the (physical) block where physical page i lives
 - erasing the block
 - \triangleright (re)programming old pages as well as new page i
- Severe write amplification
 - □ writes are slow!
- Poor wear leveling
 - pages corresponding to "hot" logical block experience disproportionate number of erase/program cycles

ect Mappin

 na_i visk block i to physical position

eads are

write to logica

volves

reading the (phy)

there physical page i li

erasing the block

programming old pages a

 χ page i

re write amplification

s are slow!

Pa

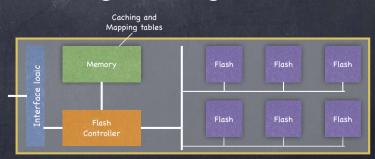
veling

□ pas disprop L "L _ 1".

eriences am cycles

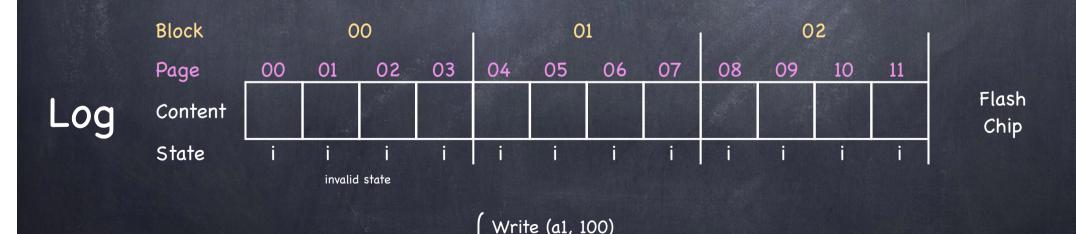
Log Structured FTL

Think of flash storage as implementing a log

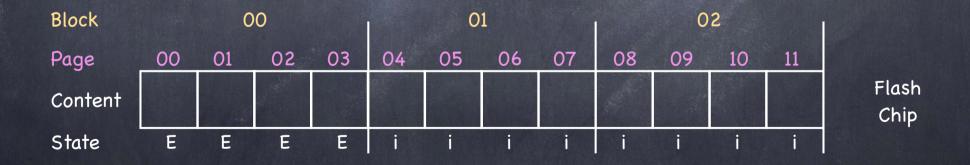

Block 0 Block 1 Block 2 Block 3 Block 4 Bl

Log Structured FTL

Think of flash storage as implementing a log


Block O Block 1 Block 2 Block 3 Block 4 Block 2

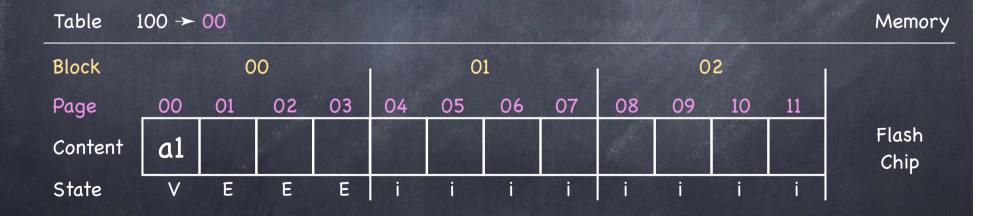
- On a write, program next available page of physical block being currently written
 - □ i.e., "append" the write to your log
- On a read, find in the log the page storing the logical block
 - □ don't want to scan the whole log...
 - □ keep an in-memory map from logical blocks to pages!


- SSD's clients read/write 4KB logical blocks
- Many physical SSD blocks; each holds 4 pages, each 4KB
 A logical block maps to a physical page

1) Erase(00)

Client operations

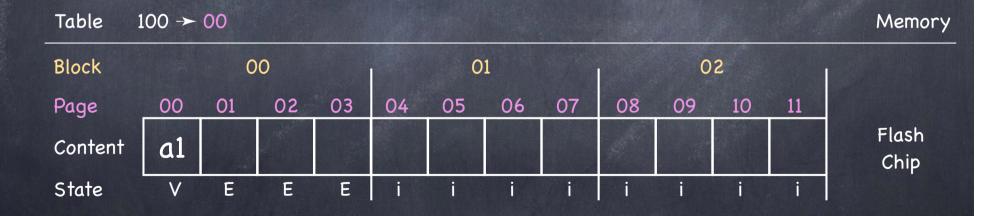
- SSD's clients read/write 4KB logical blocks
- Many physical SSD blocks; each holds 4 pages, each 4KB
 A logical block maps to a physical page



Write (a1, 100)

Client operations

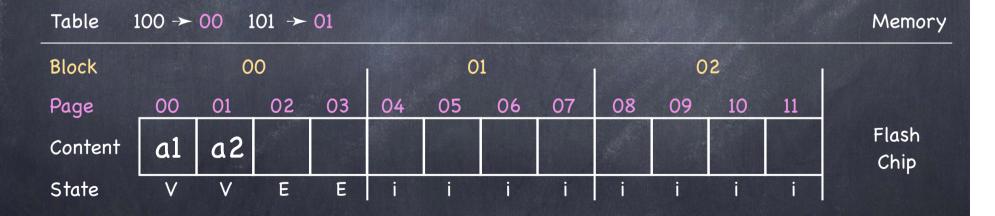
2) Program(00)


- SSD's clients read/write 4KB logical blocks
- Many physical SSD blocks; each holds 4 pages, each 4KB
 A logical block maps to a physical page

Client operations

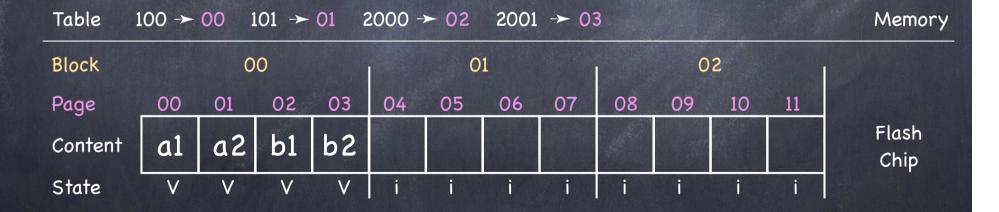
Write (a1, 100)

- SSD's clients read/write 4KB logical blocks
- Many physical SSD blocks; each holds 4 pages, each 4KB
 A logical block maps to a physical page

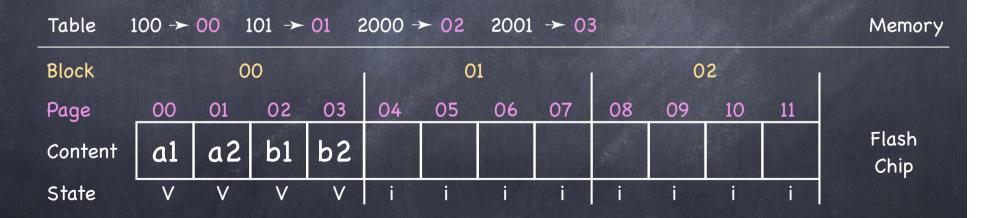


Client operations

Write (a1, 100) Write (a2, 101)


3) Program(01)

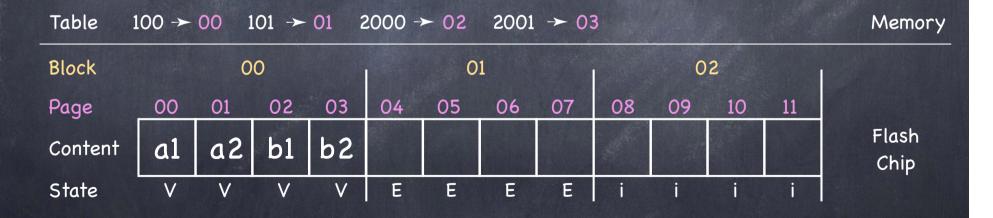
- SSD's clients read/write 4KB logical blocks
- Many physical SSD blocks; each holds 4 pages, each 4KB
 A logical block maps to a physical page


Client operations
Write (a1, 100)
Write (a2, 101)

- SSD's clients read/write 4KB logical blocks
- Many physical SSD blocks; each holds 4 pages, each 4KB
 A logical block maps to a physical page

© Client operations Write (a1, 100)
Write (a2, 101)
Write (b1, 200)
Write (b2, 200)

- SSD's clients read/write 4KB logical blocks
- Many physical SSD blocks; each holds 4 pages, each 4KB
 A logical block maps to a physical page

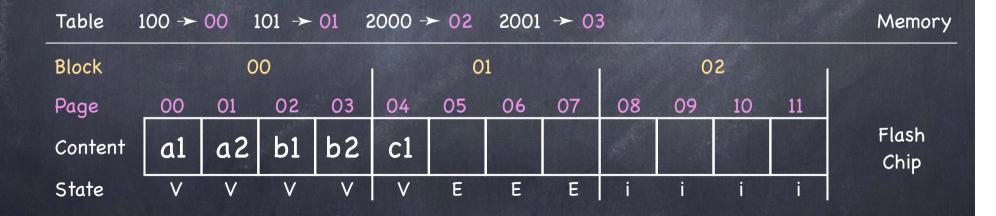


Write (c1, 100)

Client operations

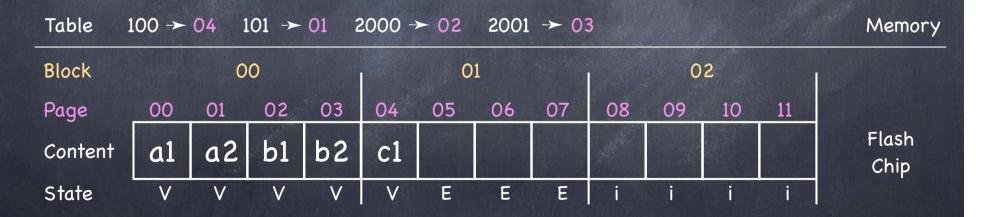
Erase(01)

- SSD's clients read/write 4KB logical blocks
- Many physical SSD blocks; each holds 4 pages, each 4KB
 A logical block maps to a physical page



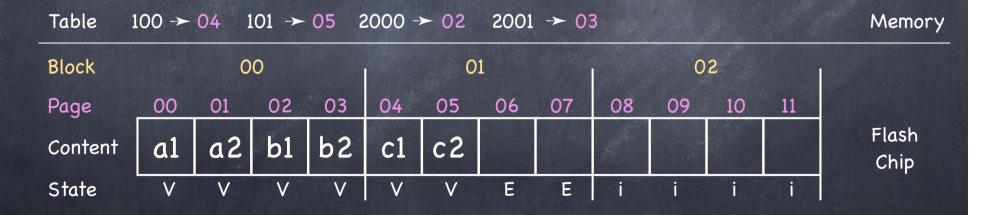
Client operations

Write (c1, 100)


Program(04)

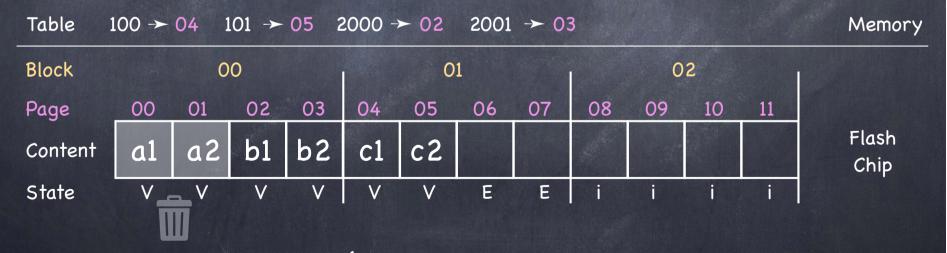
- SSD's clients read/write 4KB logical blocks
- Many physical SSD blocks; each holds 4 pages, each 4KB
 A logical block maps to a physical page

Client operations


- SSD's clients read/write 4KB logical blocks
- Many physical SSD blocks; each holds 4 pages, each 4KB
 A logical block maps to a physical page

Client operations

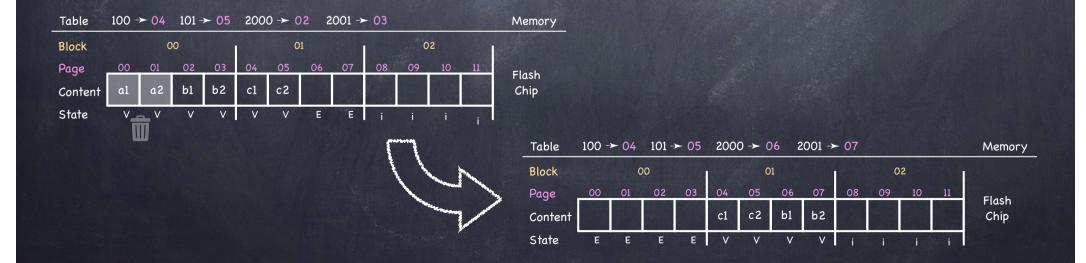
Write (c1, 100)


- SSD's clients read/write 4KB logical blocks
- Many physical SSD blocks; each holds 4 pages, each 4KB
 A logical block maps to a physical page

Client operations

Write (c1, 100) Write (c2, 101)

- SSD's clients read/write 4KB logical blocks
- Many physical SSD blocks; each holds 4 pages, each 4KB
 A logical block maps to a physical page



Client operations

Write (c1, 100) Write (c2, 101)

Garbage Collection

- Reclaim dead blocks
 - □ find a block with garbage pages
 - □ copy elsewhere the block's live pages
 - use Mapping Table to distinguish live pages from dead
 - make block available for writing again

Shrinking the Mapping Table

Per-page mapping is memory hungry

□ 1TB SSD, 4KB pages, 4B/MTE: 1GB Mapping Table!

Shrinking the Mapping Table

- Per-page mapping is memory hungry Mapping Table Entries
 - □ 1TB SSD, 4KB pages, 4B/MTE: 1GB Mapping Table!

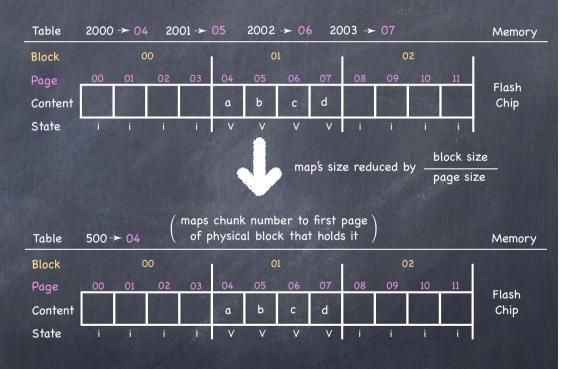
physical

Logical blocks

- Per-block mapping? Decreases MT size by block size page size
 - ☐ The Idea: Divide logical block address space in chunks of the size of a physical block chunk # (chunk #)

entre various de la constante	cnu	nk U	Linkson (Los), A	chunk I					
0	1	2	3	4	5	6	7		
8	9	10	11	12	13	14	15		
16	17	18	19	20	21	22	23		
24	25	26	27	28	29	30	31		
32	33	34	35	36	37	38	39		
40	41	42	43	44	45	46	47		
48	49	50	51	52	53	54	55		
56	57	58	59	60	61	62	63		

think of logical block address as

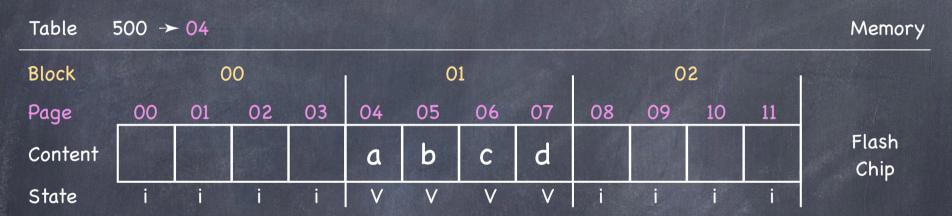


- ▶ E.g., logical block 41
- Map all logical blocks within a chunk C to the same physical block B
 - unlike direct mapping, C can over time map to different Bs (better wear leveling!)

chunk 11

Shrinking the Mapping Table

- Assume every chunk is 4 logical blocks, mapped to some physical block
- Then, to find the location of a logical block L
 - use the high order bits of L's to determine the chunk C that L belongs to
 - □ find the physical block B that chunk C is mapped to
 - use least significant bits in L's address to identify the page within B that stores L


To find logical block 2001:

- > $2001~{
 m div}~4$ identifies the chunk that holds logical block 2001
- \triangleright 2001 $\mod 4$ identifies the page within that chunk that holds logical block 2001

Per-block Mapping

Reading is easy...

... but writing a page c' requires reading in the whole block and writing it elsewhere

Table	500 →	- 08							X				Memory
Block	00			O1			02						
Page	00	01	02	03	04	05	06	07	80	09	10	11	
Content				* Was Alle					a	b	c'	d	Flash Chip
State	i	i	i	i	Е	Е	Е	Е	٧	V	٧	٧	

Hybrid Mapping

- Set aside a few physical blocks to implement log
 - □ mapped per-page
- Use per-block mapping for the other blocks
- On read
 - search for logical block in Log Table; then go to Data
 Table (which keeps per-block mapping)
- Periodically, pay the price to copy out content from the log blocks so it can be mapped per block
 - □ storing contiguous logical blocks in the same physical block may cause write amplification
- For wear leveling, rotate the blocks used for logging

Performance (Throughput)

- Muge difference between SSD and HDD for random I/O
- Not so much for sequential I/O
- On SSDs
 - sequential still better than random
 - ▶ FS design tradeoffs for HDD still apply
 - sequential reads perform betterthan writes
 - □ random writes perform much better than random reads
 - ▶ log transform random accesses into sequential accesses!

	Ran	dom	Sequential				
Device	Reads Writes (MB/s)		Reads (MB/s)	Writes (MB/s)			
Samsung 840Pro SSD	103	287	421	384			
Seagate 600 SSD	84	252	424	374			
Intel SSD 335 SSD	39	222	344	354			
Seagate Savvio 15K.3 HDD	2	2	223	223			