Fir

CLOC

ding an a
K algorith

N0IM

M W

aly in the
ith Harmony

def CLOCK(n): n
result = { .entries: [None,] * n, .recent: {}, .hand: 0, .misses: 0 }

def ref(ck, x):
if £ not in ck—entries:

while ck—entries[ck—hand]| in ck—recent: i
ck—recent —= {ck—entries[ck—hand]} CLOCK

ck—hand = (ck—hand + 1) % len(ck—entries) .
ck—entries[ck—hand] = z algorlthm
ck—hand = (ck—hand + 1) % len(ck—entries)
ck—rmisses += 1

ck—recent |= {z} .
clock3, clock4, refs = CLOCK(3), CLOCK(4), |]
for ¢ in {1..10}: |
let = choose({ 1..5 }): find an
refs += |a] anomaly

ref(? clock3, x); ref(? clock, x)
assert(clock4.misses <= clock3.misses)

Harmony output

#states 746532

Safety Violation

TO: __init__ () [0,1,125-132,2-19,133-137,2-19,138-157(choose 5),158-174,21-43,79-124,175-184,
21-43,79-124,185-201,152-157(choose 4),158-174,21-43,79-124,175-184,21-43,79-124,185-201,152-
157 (choose 3),158-174,21-43,79-124,175-184,21-43,79-124,185-201,152-157(choose 2),158-174,21-
78,29-78,29-78,29-43,79-124,175-184,21-43,79-124,185-201,152-157(choose 4),158-174,21-28,114-
124,175-184,21-28,114-124,185-201,152-157(choose 5),158-174,21-78,29-43,79-124,175-184,21-28,
114-124,185-201,152-157(choose 4),158-174,21-28,114-124,175-184,21-28,114-124,185-201,152-157

(choose 1),158-174,21-78,29-78,29-78,29-43,79-124,175-184,21-78,29-78,29-78,29-78,29-43,79-12
4,185-201,152-157(choose 5),158-174,21-28,114-124,175-184,21-43,79-124,185-201,152-157(choose
4),158-174,21-28,114-124,175-184,21-43,79-124,185-197] { clock3: { .entries: [1, 4, 5 1, .h
and: 1, .misses: 6, .recent: {1, 4, 5 } }, clockd4: { .entries: [1, 5, 4, 2 1, .hand: 3, .mi
sses: 7, .recent: {1, 4, 5} }, refs: [5, 4, 3, 2, 4, 5, 4, 1, 5, 41 }

Harmony assertion failed

|
Reference string

Presenting... The Belady CLOCK Anomaly

3 |2 |4 |5 |4 |1 |5 |4
3 frames:|* 5 5% (2 |2 [2* [2* |1 1
6 missesg 4 A¥ 4% |4 |4 4% |4* |4*
* 3 |3 |5 5 |5 |5
3 |2 |4 |5 |4 |1 |5 |4
1 5 |5 |5*¥ |5% |5% [5x |1 1
4 fr:f\mesz 4 |4 |4 |4 |4 |a |a* |5
7 misses 2 3 13 13 13 |3 |3 |3* =
* 12 12 2 |2 |2 |2 |2¢

red = miss

X

_

is clockhand
is recent bit

Presenting... The Belady CLOCK Anomaly

3 2 |4 |5 |4 |1 |5 g
3 frames:|* 5 5% (2 |2 2% [2* |1 |p |1
6misses§ 4 4* |4* |4 |4 |lax b+ |4*
* 3 |3 |5 5 |5 |5

3 2 |4 |5 |4 |1 |5 |a
1 5 |5 |5* |5% 5% (5% |1 |1 |1

4fr§mesz 4 |4 |4 |4 |4 |4 |4a* |p
7m|ssesf’l 3 13 13 13 |3 Iz |b* =
* 12 12 12 12 |2 | |2¢

stack

property

first

violated

red = miss

X

_

is clockhand
is recent bit

The Little Tea House

* The table can be in one of four states

1. no one sitting at the table

2. one person sat down, but is not yet allowed to drink while waiting
for the second person

3. two persons are sitting down, both allowed to drink

4. one person has left after drinking

 State 2 and 4 both have one person sitting at the table, but
they are very different states nonetheless

The Little Tea Housg

Persistent Storage

Storage Devices

We focus on two types of persistent storage
magnetic disks
servers, workstations, laptops
flash memory

smart phones, tablets, cameras, laptops

Other exist(ed)

tapes

m
[

gl

drums

clay tablets

The Oldest Library?

Ashurbanipal, King of Assyria (668-630 bc)

Magnetic disk

Store data magnetically on thin meftallic film
bonded tfo rotating disk of glass, ceramic, or
aluminum

Disk Drive Schematic

data on a track
can be read
without moving
arm

track skewing
staggers logical
address O on
adjacent one to
account for time
to move head

Typically 512 bytes
spare sectors added for fault tolerance

Block/Sector

reads by sensing a magnetic field
writes by creating one

floats on air cushion created by
spinning disk

|

Head

Arm

set of tracks on different

Spindle

surfaces with same track index \

2018: 4200-15000 RPM

Platter

assembly

thin cylinder that holds
magnetic material

each platter has two surfaces

Disk Read/Write

Present disk with a sector address
Old: CHS = (cylinder, head, sector)
New abstraction: Logical Block Address (LBA)

linear addressing 0...N-1

Heads move to appropriate track
seek
settle

Appropriate head is enabled

Wait for sector to appear under head

rotational latency

Read/Write sector

transfer time

T

-

Disk access time:

~

Disk Read/Write

Present disk with a sector address
Old: CHS = (cylinder, head, sector)
New abstraction: Logical Block Address (LBA)

linear addressing 0...N-1

Heads move to appropriate track
seek (and though shalt approximately find)
settle (fine adustments)

Appropriate head is enabled

Wait for sector to appear under head

rotational latency

Read/Write sector

transfer time

T

-

Disk access time:

seek time +

~

Disk Read/Write

Present disk with a sector address
Old: CHS = (cylinder, head, sector)
New abstraction: Logical Block Address (LBA)

linear addressing 0...N-1

Heads move to appropriate track
seek (and though shalt approximately find)
settle (fine adustments)

Appropriate head is enabled

Wait for sector to appear under head

rotational latency

Read/Write sector

transfer time

T

-

Disk access time:

seek time +

rotation time +

~

Disk Read/Write

Present disk with a sector address
Old: CHS = (cylinder, head, sector)
New abstraction: Logical Block Address (LBA)

linear addressing 0...N-1

Heads move to appropriate track
seek (and though shalt approximately find)

settle (fine adustments) p N
Appropriate head is enabled Disk access time:

Wait for sector to appear under head seek time +

rotational latency

Read/Write sector
transfer time transfer time

rotation time +

Seek time:
A closer look

Minimum: time to go from one track to the next
0.3-1.5 ms

Maximum: time to go from innermost to outermost track
more than 10ms; up to over 20ms

Average: average across seeks between each possible pair

of tracks

approximately time to seek 1/3 of the way across disk

How did we get that?

To compute average seek time, add distance
between every possible pair of tracks and divide
by total number of pairs

assuming tracks, pairs, and sum of distances is

which we compute as

How did we get that?

To compute average seek time, add distance
between every possible pair of tracks and divide
by total number of pairs

assuming tracks, pairs, and sum of distances is
which we compute as

The inner integral expands to

which evaluates to

How did we get that?

To compute average seek time, add distance
between every possible pair of tracks and divide
by total number of pairs

assuming tracks, pairs, and sum of distances is
which we compute as

The inner integral expands to

which evaluates to

The outer integral becomes

which we divide by the number of pairs to obtain

Seek time:
A closer look

Minimum: time to go from one track to the next
0.3-1.5 ms

Maximum: time to go from innermost to outermost track
more than 10ms; up to over 20ms
Average: average across seeks between each possible pair
of tracks
approximately time to seek 1/3 of the way across disk
Head switch time: time to move from frack on one
surface to the same track on a different surface

range similar fo minimum seek fime

Rotation ftime:
A closer look

Today most disk rotate at 4200 to 15,000 RPM

~15ms to 4ms per rotation

good estimate for rotational latency is half that amount

Head starts reading as soon as it settles on a track

track buffering to avoid “shoulda coulda” if any of the
sectors flying under the head turn out to be needed

Transfer time:
A closer look

Surface transfer time

Time to transfer one or more sequential sectors to/
from surface after head reads/writes first sector

Much smaller that seek time or rotational latency
512 bytes at 100MB/s = 5us (0.005 ms)

Lower for outer tracks than inner ones
same RPM, but more sectors/track: higher bandwidth!

Host transfer time

time to transfer data between host memory and disk
buffer

60MB/s (USB 2.0); 640 MB/s (USB 3.0); 25.GB/s (Fibre
Channel 256GFC)

Buffer Memory

Small cache [T Track buffer”, 8 to 16 MB]
holds data

read from disk
about to be written to disk

On write

write back (return from write as soon as
data is cached)

write through (return once it is on disk)

Computing I/0 time

The rate of I/0 is computed as

Example:
Toshiba MK3254GSY

Size
Platters/Heads 2/4
Capacity 320GB
Performance
Spindle speed 7200 RPM
Avg. seek time R/W 10.5/12.0 ms
Max. seek time R/W 19 ms
Track-to-track 1 ms
Surface transfer time 54-128 MB/s
Host transfer time 375 MB/s
Buffer memory 16MB
Power
Typical 16.35W
Idle 11.68 W

500 Random Reads

Workload
Size 500 read requests, randomly chosen sector
Platters/Heads 2/4 served in FIFO order
Capacity 320GB .
How long to service them?
Performance
spindle speed 7200 RPM 500 times (seek + rotation + transfer)
Avg. seek time R/W 10.5/12.0 ms seek fime: 10.5 ms (avg)
Max. seek time R/W 19 ms rofation fime:
7200 RPM = 120 RPS
Track-to-track 1 ms
: rotation time 8.3 ms
Surface transfer time 54-128 MB/s on average, half of that: 4.15 ms
Host transfer time 375 MB/s transfer time
Buffer memory 16MB at least 54 MB/s
Power 512 bytes transferred in (.5/54,000) seconds = 9.26us
Typical 16.35 W Total time:
Idle 11.68 W 500 x (10.5 + 4.15 + 0.009) =~ 7.33 sec

500 Sequential Reads

. Workload
Size
500 read requests for sequential sectors on the
Platters/Heads 2/4 same track
Capacﬂ'y 320GB served in FIFO order
Performance
i ?
Spindle speed 2200 RPM How long to service thems
Avg. seek time R/W 10.5/12.0 ms seek + rotation + 500 times transfer
k time: 10.5
Max. seek time R/W 19 ms seek time: 10.5 ms (avg)
tation time:
Track-to-track 1 ms rotation fime
4.15 ms, as before
Surface transfer time 54-128 MB/s ,
: transfer time
Host transfer time 375 MB/S outer track: 500 x (.5/128000) =~ 2ms
Buffer memory 16MB inner track: 500 x (.5/54000) seconds = 4.6ms
Power Total time is between:
Typica[16.35 W outer track: (2 + 4.15 + 10.5) ms = 16.65 ms
Idle 11.68 W

inner track: (4.6 + 4.15 + 10.5) ms = 19.25 ms

Disk Head Scheduling

In a multiprogramming/time sharing environment, a
queue of disk I/Os can form

(surface, track, sector)

T p——
1o
I
—_— —_—
I
]
I

OS maximizes disk I/O throughput by minimizing
head movement through disk head scheduling

and this time we have a good sense of the length of
the fask!

FCFS

Assume a queue of request exists to read/write
tracks

-1 83 (72|14 [147| 16 |150] and the head is on track 65

O 15 25 50 65 75 100 125 150

~——

FCFS scheduling results in disk head moving 550 tracks

and makes no use of what we know about the length of the tasks!

SSTF:
Shortest Seek Time First

Greedy scheduling

Rearrange queue from: ====|83|72|14|147] 16 |150
Tfo: «eesl| 14|16 |150(147| 83 [72
0O 15 25 50 65 75 100 125 150

A

j

R
Head moves 221 tracks BUT OS knows blocks, not
tracks (easily fixed)

starvation

SCAN Scheduling
"Elevator”

Move the head in one direction unftil all requests
have been serviced, and then reverse

sweeps disk back and forth

Rearrange queue from: =nxr| 83|72 14 |147) 16 [150
to: «==s|150[147 83|72 | 14| 16
0 15 25 50 65 75 100 125 150

\

S S

Head moves 187 tracks.

C-SCAN scheduling

Circular SCAN

sweeps disk in one direction (from outer to inner track),
then resets to outer track and repeats

O 15 25 50 65 75 100 125 150

3

More uniform wait time than SCAN

moves head to serve requests that are likely
to have waited longer

OS Outsources
Scheduling Decisions

Selecting which frack to serve next should include
rotation time (not just seek time!)

SPTF: Shortest Positioning Time First

Hard for the OS to estimate rotation time accurately

Hierarchical decision process
OS sends disk controller a batch of “reasonable” requests

disk controller makes final scheduling decisions

Back to Storage...

What qualities we want from storage?
Reliable: It returns the data you stored
Fast: It returns the data you stored promptly
Affordable: It does not break the bank

Plenty: It holds everything you need

What we may instead get is a SLED! |

Single, Large, Expensive Disk

