
Back to
Where is
this from?

The early 90s
Growing memory sizes

file systems can afford large block caches

most reads can be satisfied from block cache

performance dominated by write performance

Growing gap in random vs sequential I/O performance

transfer bandwidth increases 50%-100% per year

seek and rotational delay decrease by 5%-10% per year

using disks sequentially is a big win

Existing file system perform poorly on many workloads

6 writes to create a new file of 1 block

new inode | inode bitmap | directory data block that includes file |
directory inode | new data block storing content of new file | data bitmap

lots of short seeks

Log Structured
File Systems

Use disk as a log

buffer all updates (including metadata!) into an in-memory
segment

when segment is full, write to disk in a long sequential
transfer to unused part of disk

Virtually no seeks

much improved disk throughput

But how does it work?

suppose we want to add a new block to a 0-sized file

LFS paces both data block and inode in its in-memory
segment

D I|
Fine.

But how do we find the inode?

Finding inodes

in UFS, just index into inode array
Super Block | Inodes | Data blocks

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Super Block Inodes Data blocks

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 ...

512 bytes/block

128 bytes/inode

To find address inode 11:

 addr(b1)+ #inode x
 size(inode)

Same in FFS (but Inodes are at divided (at
known locations) between block groups

Finding inodes in LFS

Inode map: a table indicating where each inode is
on disk

Inode map blocks are written as part of the segment

... so need not seek to write to imap

but how do we find the blocks of the Inode map?

Normally, Inode map cached in memory

On disk, found in a fixed checkpoint region

updated periodically (every 30 seconds)

The disk then looks like

CR freeseg1 seg2 seg3 free

LFS vs UFS
inode

directory

data

inode map

Log

Unix File System

Log-structured File System

Blocks written to
create two 1-block files:
dir1/file1 and dir2/file2
in UFS and LFS

dir1

dir1 dir2

dir2

file1 file2

file1 file2

Reading from disk in LFS

Suppose nothing in memory...

read checkpoint region

from it, read and cache entire inode map

from now on, everything as usual

read inode

use inode’s pointers to get to data blocks

When the imap is cached, LFS reads involve
virtually the same work as reads in traditional file
systemsmodulo an

imap lookup

Garbage collection
As old blocks of files are replaced by new, segment in log
become fragmented

Cleaning used to produce contiguous space on which to write

compact M fragmented segments into N new segments, newly
written to the log

free old M segments

Cleaning mechanism:

How can LFS tell which segment blocks are live and which dead?

Segment Summary Block

Cleaning policy

How often should the cleaner run?

How should the cleaner pick segments?

Segment Summary Block
Kept at the beginning of each segment

For each data block in segment, SSB holds

The file the data block belongs to (inode#)

The offset (block#) of the data block within the file

During cleaning, to determine whether data block D is live:

use inode# to find in imap where inode is currently on disk

read inode (if not already in memory)

check whether a pointer for block block# refers to D’s address

Update file’s inode with correct pointer if D is live and
compacted to new segment

Which segments to
clean, and when?

When?

when disk is full

periodically

when you have nothing better to do

Which segments?

utilization: how much it is gained by cleaning

segment usage table tracks how much live data in segment

age: how likely is the segment to change soon

better to wait on cleaning a hot block, since free blocks are
going to quickly reaccumulate

Crash recovery
The journal is the file system!

On recovery

read checkpoint region

may be out of date (written periodically)

may be corrupted

1) two CR blocks at opposite ends of disk / 2) timestamp blocks before and
after CR

use CR with latest consistent timestamp blocks

roll forward

start from where checkpoint says log ends

read through next segments to find valid updates not
recorded in checkpoint

when a new inode is found, update imap

when a data block is found that belongs to no inode, ignore

