&R COW File Systems

Where is

(copy-on-write)

@ Data and metadata not updated in place, but
written to new location

o transforms random writes into sequential writes
Update

New indirect
New

free space bitmap data block
free space bitmap data

block Wate
Inode

Adding a block ™% A Updote
: jimap
to a file

indirect
block

Traditional

Log Structured
File Systems

@ Use disk as a log

The early 90s

@ Growing memory sizes
o file systems can afford large block caches

o buffer all updates (including metadata!) info an in-memory
o0 most reads can be satisfied from block cache

segment

o performance dominated by write performance o when segment is full, write to disk in a long sequential

" ; . transfer to unused part of disk
@ Growing gap in random vs sequential I/O performance
o transfer bandwidth increases 50%-100% per year @ Virtually no seeks

o seek and rotational delay decrease by 5%-10% per year o much improved disk throughput
o using disks sequentially is a big win o But how does it work?
@ Existing file system perform poorly on many workloads

o suppose we want to add a new block to a O-sized file
o 6 writes to create a new file of 1 block

o LFS paces both data block and inode in its in-memory

new inode | inode bitmap | directory data block that includes file | Segmenf

directory inode | new data block storing content of new file | data bitmap

Fine.
o lots of short seeks | D |1

But how do we find the inode?

Finding inodes Finding inodes in LFS

@ in UFS, just index into inode array @ Inode map: a tfable indicating where each inode is
Super Block | Inodes | Data blocks on disk

512 bytes/block o Inode map blocks are written as part of the segment
Super Block : Inodes i Data blocks 128 bytes/inode

O .. so need not seek to write to imap
bO b7 b8 b9 blO | bll ..

2 28 32 36 @ but how do we find the blocks of the Inode map?
To find address inode 11:)
e =20 addr(bl)+ #inode x o Normally, Inode map cached in memory

26 30 34 38 .
size(inode)
Y o b cag] o On disk, found in a fixed checkpoint region

» updated periodically (every 30 seconds)

@ Same in FFS (but Inodes are at divided (at @ The disk then looks like

known locations) between block groups

crR | s,égl " s,égz ség3

LFS vs UFS Reading from disk in LFS

@ Suppose nothing in memory...

o read checkpoint region

o from it, read and cache entire inode map

dir2

gl - o from now on, everything as usual
Unix File System

| » read inode
I:I inode map

dirl dire » use inodes pointers fo get to data blocks

|

| Logé—— >

, @ When the imap is cached, LFS reads involve
[— Blocks written to

create two 1-block files: virtually the same work as reads in traditional file
dirl/filel and dir2/file2 modulo an
Log-structured File System in UFS and LFS imap lookup sYSfems

Garbage collection

@ As old blocks of files are replaced by new, segment in log
become fragmented

@ Cleaning used to produce contiguous space on which fo write

o compact M fragmented segments info N new segments, newly
written to the log

o free old M segments

@ Cleaning mechanism:
o How can LFS tell which segment blocks are live and which dead?

» Segment Summary Block

@ Cleaning policy
o How often should the cleaner run?

o How should the cleaner pick segments?

Which segments to
clean, and when?

@ When?
o when disk is full
o periodically
o when you have nothing better fo do

® Which segments?
o utilization: how much it is gained by cleaning
» segment usage table tracks how much live datfa in segment
o age: how likely is the segment to change soon

» better to wait on cleaning a hot block, since free blocks are
going to quickly reaccumulate

Segment Summary Block

@ Kept at the beginning of each segment

@ For each data block in segment, SSB holds
o The file the data block belongs to (inode#)
o The offset (block#) of the data block within the file

@ During cleaning, to determine whether data block D is live:
o use inode# to find in imap where inode is currently on disk
o read inode (if not already in memory)
o check whether a pointer for block block# refers to Ds address

@ Update files inode with correct pointer if D is live and
compacted fo new segment

Crash recovery

@ The journal is the file system!

@ On recovery
o read checkpoint region

» may be out of date (written periodically)

» may be corrupted

~ 1) two CR blocks at opposite ends of disk / 2) timestamp blocks before and
after CR

— use CR with latest consistent timestamp blocks
o roll forward
» start from where checkpoint says log ends

» read through next segments to find valid updates not
recorded in checkpoint
-~ when a new inode is found, update imap

~ when a data block is found that belongs fo no inode, ignore

