
Case studies
FAT late 70s; Microsoft

key idea: linked list

Today: flash sticks

Unix FFS mid 80’s

key idea: tree-based multi-level index

Today: Linux ext2 and ext3

NTFS early 1990s; Microsoft.

Key idea: variable size extents instead of fixed size blocks

Today: Windows 7, Linux ext4, Apple HFS

ZFS early 2000; open source.

Key idea: copy on write (COW)

FAT File system
 Microsoft, late 70s

File Allocation Table (FAT)

started with MSDOS

in FAT-32, supports 228 blocks and files of 232-1 bytes

file 9 block 3

file 9 block 0
file 9 block 1
file 9 block 2
file 12 block 0

file 12 block 1

file 9 block 4

FAT Data blocks
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

20
19

Index Structures

File Allocation Table (FAT)

array of 32-bit entries

file represented as a linked list
of FAT entries

file # = index of first FAT entry

Free space map

If data block i is free,
then FAT[i] = 0

find free blocks by
scanning FAT

Locality heuristics

As simple as next fit:

scan sequentially from
last allocated entry and
return next free entry

Can be improved through
defragmentation

FAT File system
 Microsoft, late 70s

File Allocation Table (FAT)

started with MSDOS

in FAT-32, supports 228 blocks and files of 232-1 bytes

file 9 block 3

file 9 block 0
file 9 block 1
file 9 block 2
file 12 block 0

file 12 block 1

file 9 block 4

FAT Data blocks
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

20
19

Advantages

simple!

used in many
USB flash keys

used even within
MS Word!

Disadvantages

Poor locality

next fit? seriously?

Poor random access

needs sequential traversal

Limited access control

no file owner or group ID metadata

any user can read/write any file

No support for hard links

metadata stored in directory entry

Volume and file size are limited

FAT entry is 32 bits, but top 4 are
reserved

no more than 228 blocks

with 4kB blocks, at most 1TB volume

file no bigger than 4GB

No support for transactional updates

FFS: Fast File System
Unix, 80s

Smart index structure

multilevel index allows to locate all blocks of a file

efficient for both large and small files [We saw that!]

Smart locality heuristics

Standard Unix treats disks as if it were RAM

lots of seeks

fragmentation: files just grab first available data block

S i d I I I I I D

0 7 8 15 16 23 24 31

40 47 48 55 56 63

D D

data blocks data blocks

data blocksdata blocksdata blocks

data blocks

data blocks

inodes

32 39

free

lists

Making the FS

Disk-Aware

Maintain the same interface…

open(), close (), read(), write () etc

…but change implementation

optimize file system layout for how disks work

Smart locality heuristics

block group placement

optimizes placement for when a file data and metadata, and
other files within same directory, are accessed together

reserved space

gives up about 10% of storage to allow flexibility needed to
achieve locality

Locality heuristics:
block group placement

Divide disk in block groups

sets of nearby tracks

Distribute metadata

old design: free space bitmap and inode map in a
single contiguous region

lots of seeks when going from reading metadata to
reading data

FFS: distribute free space bitmap and inode array
among block groups. Keep a superblock copy in
each block group

File placement

when a new regular file is created, FFS looks for
inodes in the same block as the file’s directory

when a new directory is created, FFS places it in a
different block from the parent’s directory

Data Placement

first free heuristics

trade short term for long term locality

Fre
e

spa
ce

bit
ma

p

In
od

es

Block group 0

Block group 1

Block group 2

Free
space

bitmap

Inodes

In
od

es

Free space
bit

ma
p

Data
blocks

in

/a
/d
/b/c

Data
blocks

in

/b
/a/g

/z

for
files

for
files

Data
blocks

in

for
files

/d/q
/c

/a/p

SB

SB

SB

Locality heuristics:
block group placement

Divide disk in block groups

sets of nearby tracks

Distribute metadata

old design: free space bitmap and inode map in a
single contiguous region

lots of seeks when going from reading metadata to
reading data

FFS: distribute free space bitmap and inode array
among block groups. Keep a superblock copy in
each block group

File Placement

when a new file is created, FFS looks for inodes in
the same block as the file’s directory

when a new directory is created, FFS places it in a
different block from the parent’s directory

Data Placement

first free heuristics

trade short term for long term locality

Start of

block group

In use FreeFre
e

spa
ce

bit
ma

p

In
od

es

Block group 0

Block group 1

Block group 2

Free
space

bitmap

Inodes

In
od

es

Free space
bit

ma
p

Data
blocks

in

/a
/d
/b/c

Data
blocks

in

/b
/a/g

/z

for
files

for
files

Data
blocks

in

for
files

/d/q
/c

/a/p

SB

SB

SB

Locality heuristics:
block group placement

Start of

block group

Small file

Divide disk in block groups

sets of nearby tracks

Distribute metadata

old design: free space bitmap and inode map in a
single contiguous region

lots of seeks when going from reading metadata to
reading data

FFS: distribute free space bitmap and inode array
among block groups. Keep a superblock copy in
each block group

File Placement

when a new file is created, FFS looks for inodes in
the same block as the file’s directory

when a new directory is created, FFS places it in a
different block from the parent’s directory

Data Placement

first free heuristics

trade short term for long term locality

Fre
e

spa
ce

bit
ma

p

In
od

es

Block group 0

Block group 1

Block group 2

Free
space

bitmap

Inodes

In
od

es

Free space
bit

ma
p

Data
blocks

in

/a
/d
/b/c

Data
blocks

in

/b
/a/g

/z

for
files

for
files

Data
blocks

in

for
files

/d/q
/c

/a/p

SB

SB

SB

Locality heuristics:
block group placement

Start of

block group

Large file

Divide disk in block groups

sets of nearby tracks

Distribute metadata

old design: free space bitmap and inode map in a
single contiguous region

lots of seeks when going from reading metadata to
reading data

FFS: distribute free space bitmap and inode array
among block groups. Keep a superblock copy in
each block group

File Placement

when a new file is created, FFS looks for inodes in
the same block as the file’s directory

when a new directory is created, FFS places it in a
different block from the parent’s directory

Data Placement

first free heuristics

trade short term for long term locality

Fre
e

spa
ce

bit
ma

p

In
od

es

Block group 0

Block group 1

Block group 2

Free
space

bitmap

Inodes

In
od

es

Free space
bit

ma
p

Data
blocks

in

/a
/d
/b/c

Data
blocks

in

/b
/a/g

/z

for
files

for
files

Data
blocks

in

for
files

/d/q
/c

/a/p

SB

SB

SB

Locality heuristics:
reserved space

When a disk is full, hard to
optimize locality

file may end up scattered
through disk

FFS presents applications with
a smaller disk

about 10%-20% smaller

user write that encroaches on
reserved space fails

super user still able to allocate
inodes to clean things upFre

e
spa

ce

bit
ma

p

In
od

es

Block group 0

Block group 1

Block group 2

Free
space

bitmap

Inodes

In
od

es

Free space
bit

ma
p

Data
blocks

in

/a
/d
/b/c

Data
blocks

in

/b
/a/g

/z

for
files

for
files

Data
blocks

in

for
files

/d/q
/c

/a/p

SB

SB

SB

Long File Exception

Blocks of a huge file not all in the same block group

12 blocks in a group (direct index)

others divided in “chunks”

Locality lost when moving between chunks

choose chunk size to amortize cost of seeks

In practice, FFS uses 4 MB chunks

Say we want to achieve 90% of peak transfer

transfer rate is 40 MB/s

positioning time (seek+rotation) is 10ms

chuck size = 40MB
s X

1s
1000ms

90msX = 3.6 MB

Caching and consistency
File systems maintain many data structures

Bitmap of free blocks and inodes

Directories

Inodes

Data blocks

Data structures cached for performance

works great for read operations...

...but what about writes?

Caching and consistency
File systems maintain many data structures

Bitmap of free blocks and inodes

Directories

Inodes

Data blocks

Data structures cached for performance

works great for read operations...

...but what about writes?

Write-back caches

delay writes: higher performance at the cost of potential inconsistencies

Write-through caches

write synchronously but poor performance (fsync)

do we get consistency at least?

Example: a tiny ext2

6 blocks, 6 inodes

0 1 0 0 0 0

inode bitmap

0 10 00 0

data bitmap

-- Iv1 -- -- -- --

i-nodes

-- -- -- -- D1 --

data blocks

owner: lorenzo

permissions: read-only

size: 1

pointer: 4

pointer: null

pointer: null

pointer: null

Suppose we append a
data block to the file

add new data block D2

Example: a tiny ext2

6 blocks, 6 inodes

0 1 0 0 0 0

inode bitmap

0 10 00 0

data bitmap

-- Iv1 -- -- -- --

i-nodes

-- -- -- -- D1 D2

data blocks

owner: lorenzo

permissions: read-only

size: 1

pointer: 4

pointer: null

pointer: null

pointer: null

Suppose we append a
data block to the file

add new data block D2

update inode

Example: a tiny ext2

6 blocks, 6 inodes

0 1 0 0 0 0

inode bitmap

0 10 00 0

data bitmap

-- Iv2 -- -- -- --

i-nodes

-- -- -- -- D1 D2

data blocks

owner: lorenzo

permissions: read-only

size: 2

pointer: 4

pointer: 5

pointer: null

pointer: null

Suppose we append a
data block to the file

add new data block D2

update inode

update data bitmap

Example: a tiny ext2

6 blocks, 6 inodes

0 1 0 0 0 0

inode bitmap

0 10 00

data bitmap

-- Iv2 -- -- -- --

i-nodes

-- -- -- -- D1 D2

data blocks

owner: lorenzo

permissions: read-only

size: 2

pointer: 4

pointer: 5

pointer: null

pointer: null

Suppose we append a
data block to the file

add new data block D2

update inode

update data bitmap

1

What if a crash or power outage occurs between writes?

What if only a single
write succeeds?

Just the data block (D2) is written to disk

Data is written, but no way to get to it - in fact, D2 still
appears as a free block

Write is lost, but FS data structures are consistent

Just the updated inode (Iv2) is written to disk

If we follow the pointer, we read garbage

File system inconsistency: data bitmap says block is free,
while inode says it is used. Must be fixed

Just the updated bitmap is written to disk

File system inconsistency: data bitmap says data block is used,
but no inode points to it. The block will never be used. Must
be fixed

What if two writes
succeed?

Inode and data bitmap updates succeed

Good news: file system is consistent!

Bad news: reading new block returns garbage

Inode and data block updates succeed

File system inconsistency. Must be fixed

Data bitmap and data block succeed

File system inconsistency

No idea which file data block belongs to!

The Consistent Update
Problem

Several file systems operations update multiple
data structures

Create new file

update inode bitmap and data bitmap

write new inode

add new file to directory file

Would like to atomically move FS from one
consistent state to another

Even with write through we have a problem

Disk only commits one write at a time!

Solution 1:

File System Checker
Ethos: If it happens, I’ll do something about it

 Let inconsistencies happen and fix them post facto

during reboot

Classic example: fsck

Unix, 1986

FSCK Summary
Sanity check the superblock

Is FS size larger than total blocks used by superblock
+ inodes?

Is FS size “reasonable”?

iI the number fo free blocks and inodes in the
superblock equal to the number of free blocks and
inodes in the file system?

On inconsistencies,

use another copy of the superblock

overwrite values in SB with those found in the file system

FSCK Summary
Sanity check the superblock

Check validity of free block and inode bitmaps

Scan inodes, indirect blocks, etc to understand which
blocks are allocated

On inconsistency, override free block bitmap
inconsistencies

Perform similar check on inodes to update inode
bitmap

FSCK Summary
Sanity check the superblock

Check validity of free block and inode bitmaps

Check that inodes are not corrupted

e.g., check type (dir, regular file, symlink, etc) field

if it can’t be fixed, clear inode and update inode
bitmap

FSCK Summary
Sanity check the superblock

Check validity of free block and inode bitmaps

Check that inodes are not corrupted

Check inode links

Scan through the entire directory tree, recomputing
the number of links for each file

If inconsistency, fix link count in inode

If no directory refers to allocated inode, move to
lost+found directory

FSCK Summary
Sanity check the superblock

Check validity of free block and inode bitmaps

Check that inodes are not corrupted

Check inode links

Check for duplicates

two inodes pointing to the same block

clear one inode (if bad), or copy block

FSCK Summary
Sanity check the superblock

Check validity of free block and inode bitmaps

Check that inodes are not corrupted

Check inode links

Check for duplicates

Check directories

Check that . and .. are the first entries

Check that each inode referred to is allocated

Check that directory tree is a tree

directory files must have a single link

FSCK Summary
Sanity check the superblock

Check validity of free block and inode bitmaps

Check that inodes are not corrupted

Check inode links

Check for duplicates

Check directories

S-L-O-W

Ad hoc solutions:
user data consistency
Asynchronous write back

forced after a fixed interval (e.g. 30 sec)

can lose up to 30 sec of work

Rely on metadata consistency

updating a file in vi

delete old file

write new file

Ad hoc solutions:
user data consistency
Asynchronous write back

forced after a fixed interval (e.g. 30 sec)

can lose up to 30 sec of work

Rely on metadata consistency

updating a file in vi

write new version to temp

move old version to other temp

move new version to real file

unlink old version

if crash, look in temp area and send “there may be a problem” email to user

Solution 2:

Ordered Updates

Three rules towards a (quickly) recoverable FS:

Never reuse a resource before nullifying all pointers
to it

Never write a pointer before initializing the structure
it points to

Never clear last pointer to live resource before setting
a new one

How?

Keep a partial order on buffered blocks

Solution 2:

Ordered Updates

Example: Create file A:

Create file A in inode block X and directory block Y

“Never write a pointer before initializing the
structure it points to”

Y cannot be written before X is

Y depends on X

Can delay both writes, as long as order is preserved

Suppose you create a second file B in blocks X and Y

Can write each block only once to cover both creates!

Y ! X

Problem: Cyclic
Dependencies

Suppose you create file A, unlink file B

Both files in same directory block & inode block

Can’t write directory until inode A initialized

Or, after crash, directory will point to bogus inode

Worse, same inode no. might be reallocated

could end up with file name A being an unrelated file

Can’t write inode block until dir entry B cleared

Or B’s link count could become smaller than directory entries

File could be deleted while link to it still exist in directory

A principled approach:
Transactions

Group together actions so that they are

Atomic: either all happen or none

Consistent: maintain invariants

Isolated: serializable (schedule in which transactions occur
is equivalent to transactions executing sequentially

Durable: once completed, effects are persistent

Critical sections are ACI, but not Durable

Transaction can have two outcomes:

Commit: transaction becomes durable

Abort: transaction never happened

may require appropriate rollback

Solution 3: Journaling
(write ahead logging)
Turns multiple disk updates into a single disk write

“write ahead” a short note to a “log”, specifying
changes about to be made to the FS data structures

if a crash occurs while updating FS data structures,
consult log to determine what to do

no need to scan entire disk!

Data Jounaling:

an example

We start with

We want to add a new block to the file

Three easy steps

Write to the log 5 blocks:

write each record to a block, so it is atomic

Write the blocks for Iv2, B2, D2 to the FS proper [checkpoint]

Mark the transaction free in the journal

What if we crash before the log is updated?

if no commit, nothing made it into FS - ignore changes!

What if we crash after the log is updated?

replay changes in log back to disk!

0 1 0 0 0 0

inode bitmap

0 10 00 0

data bitmap

-- Iv1 -- -- -- --

i-nodes

-- -- -- -- D1 --

data blocks

TxBegin | Iv2 | B2 | D2 | TxEnd

Journaling and
Write Order

Issuing the 5 writes to the log
sequentially is slow

Issue at once, and transform in a single sequential write!?

Problem: disk can schedule writes out of order

first write TxBegin, Iv2, B2, TxEnd

then write D2

TxBegin | Iv2 | B2 | D2 | TxEnd

Disk loses power

Log contains:

syntactically, transaction log looks fine, even with nonsense in
place of D2!

TxBegin | Iv2 | B2 | ?? | TxEnd

TxEnd must block until prior blocks are on disk

Transaction committed when TxEnd on disk

