
Case studies
FAT late 70s; Microsoft


key idea: linked list

Today:  flash sticks


Unix FFS mid 80’s

key idea: tree-based multi-level index

Today: Linux ext2 and ext3

NTFS early 1990s; Microsoft.

Key idea: variable size extents instead of fixed size blocks

Today: Windows 7, Linux ext4, Apple HFS


ZFS early 2000; open source.

Key idea: copy on write (COW)

FAT File system 
 Microsoft, late 70s

File Allocation Table (FAT)

started with MSDOS

in FAT-32, supports 228 blocks and files of 232-1 bytes
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Index Structures

File Allocation Table (FAT)


array of 32-bit entries

file represented as a linked list 
of FAT entries

file # = index of first FAT entry 

Free space map

If data block i is free, 
then FAT[i] = 0

find free blocks by 
scanning FAT

Locality heuristics

As simple as next fit:


scan sequentially from 
last allocated entry and 
return next free entry


Can be improved through 
defragmentation
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Advantages

simple!


used in many 
USB flash keys

used even within 
MS Word!

Disadvantages

Poor locality


next fit? seriously?

Poor random access


needs sequential traversal

Limited access control


no file owner or group ID metadata

any user can read/write any file


No support for hard links

metadata stored in directory entry


Volume and file size are limited

FAT entry is 32 bits, but top 4 are 
reserved

no more than 228 blocks

with 4kB blocks, at most 1TB volume

file no bigger than 4GB


No support for transactional updates

FFS: Fast File System 
Unix, 80s

Smart index structure

multilevel index allows to locate all blocks of a file


efficient for both large and small files [We saw that!]


Smart locality heuristics


Standard Unix treats disks as if it were RAM

lots of seeks

fragmentation: files just grab first available data block
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Making the FS 

Disk-Aware

Maintain the same interface…

open(), close (), read(), write () etc


…but change implementation

optimize file system layout for how disks work


Smart locality heuristics

block group placement


optimizes placement for when a file data and metadata, and 
other files within same directory, are accessed together


reserved space

gives up about 10% of storage to allow flexibility needed to 
achieve locality

Locality heuristics: 
block group placement

Divide disk in block groups

sets of nearby tracks


Distribute metadata

old design: free space bitmap  and inode map in a 
single contiguous region


lots of seeks when going from reading metadata to 
reading data


FFS: distribute free space bitmap and inode array 
among block groups. Keep a superblock copy in 
each block group


File placement

when a new regular file is created, FFS looks for 
inodes in the same block as the file’s directory

when a new directory is created, FFS places it in a 
different block from the parent’s directory


Data Placement

first free heuristics

trade short term for long term locality
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Locality heuristics: 
block group placement

Divide disk in block groups

sets of nearby tracks


Distribute metadata

old design: free space bitmap  and inode map in a 
single contiguous region


lots of seeks when going from reading metadata to 
reading data


FFS: distribute free space bitmap and inode array 
among block groups. Keep a superblock copy in 
each block group


File Placement

when a new file is created, FFS looks for inodes in 
the same block as the file’s directory

when a new directory is created, FFS places it in a 
different block from the parent’s directory


Data Placement

first free heuristics

trade short term for long term locality
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Locality heuristics: 
block group placement

Start of

block group

Small file

Divide disk in block groups

sets of nearby tracks


Distribute metadata

old design: free space bitmap  and inode map in a 
single contiguous region


lots of seeks when going from reading metadata to 
reading data


FFS: distribute free space bitmap and inode array 
among block groups. Keep a superblock copy in 
each block group


File Placement

when a new file is created, FFS looks for inodes in 
the same block as the file’s directory

when a new directory is created, FFS places it in a 
different block from the parent’s directory


Data Placement

first free heuristics

trade short term for long term locality
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Locality heuristics: 
block group placement

Start of

block group

Large file

Divide disk in block groups

sets of nearby tracks


Distribute metadata

old design: free space bitmap  and inode map in a 
single contiguous region


lots of seeks when going from reading metadata to 
reading data


FFS: distribute free space bitmap and inode array 
among block groups. Keep a superblock copy in 
each block group


File Placement

when a new file is created, FFS looks for inodes in 
the same block as the file’s directory

when a new directory is created, FFS places it in a 
different block from the parent’s directory


Data Placement

first free heuristics

trade short term for long term locality
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Locality heuristics: 
reserved space

When a disk is full, hard to 
optimize locality


file may end up scattered 
through disk


FFS presents applications with 
a smaller disk


about 10%-20% smaller

user write that encroaches on 
reserved space fails

super user still able to allocate 
inodes to clean things upFre
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Long File Exception

Blocks of a huge file not all in the same block group

12 blocks in a group (direct index)

others divided in “chunks”


Locality lost when moving between chunks

choose chunk size to amortize cost of seeks


In practice, FFS uses 4 MB chunks

Say we want to achieve 90% of peak transfer

transfer rate is 40 MB/s

positioning time (seek+rotation) is 10ms

chuck size =  40MB
s X

1s
1000ms

90msX = 3.6 MB

Caching and consistency
File systems maintain many data structures


Bitmap of free blocks and inodes

Directories

Inodes

Data blocks


Data structures cached for performance

works great for read operations...

...but what about writes?



Caching and consistency
File systems maintain many data structures


Bitmap of free blocks and inodes

Directories

Inodes

Data blocks


Data structures cached for performance

works great for read operations...

...but what about writes?


Write-back caches

delay writes: higher performance at the cost of potential inconsistencies


Write-through caches

write synchronously but poor performance (fsync)


do we get consistency at least?

Example: a tiny ext2

6 blocks, 6 inodes

0 1 0 0 0 0

inode bitmap

0 10 00 0

data bitmap

-- Iv1 -- -- -- --

i-nodes

-- -- -- -- D1 --

data blocks

owner:  lorenzo

permissions: read-only

size:   1

pointer:  4

pointer:  null

pointer:  null

pointer:  null

Suppose we append a 
data block to the file 

add new data block D2

Example: a tiny ext2

6 blocks, 6 inodes

0 1 0 0 0 0

inode bitmap

0 10 00 0

data bitmap

-- Iv1 -- -- -- --

i-nodes

-- -- -- -- D1 D2

data blocks

owner:  lorenzo

permissions: read-only

size:   1

pointer:  4

pointer:  null

pointer:  null

pointer:  null

Suppose we append a 
data block to the file 

add new data block D2

update inode

Example: a tiny ext2

6 blocks, 6 inodes

0 1 0 0 0 0

inode bitmap

0 10 00 0

data bitmap

-- Iv2 -- -- -- --

i-nodes

-- -- -- -- D1 D2

data blocks

owner:  lorenzo

permissions: read-only

size:   2

pointer:  4

pointer:  5

pointer:  null

pointer:  null

Suppose we append a 
data block to the file 

add new data block D2

update inode

update data bitmap 



Example: a tiny ext2

6 blocks, 6 inodes

0 1 0 0 0 0

inode bitmap

0 10 00

data bitmap

-- Iv2 -- -- -- --

i-nodes

-- -- -- -- D1 D2

data blocks

owner:  lorenzo

permissions: read-only

size:   2

pointer:  4

pointer:  5

pointer:  null

pointer:  null

Suppose we append a 
data block to the file 

add new data block D2

update inode

update data bitmap 

1

What if a crash or power outage occurs between writes?

What if only a single 
write succeeds?

Just the data block (D2) is written to disk

Data is written, but no way to get to it - in fact, D2 still 
appears as a free block

Write is lost, but FS data structures are consistent


Just the updated inode (Iv2) is written to disk

If we follow the pointer, we read garbage

File system inconsistency: data bitmap says block is free, 
while inode says it is used. Must be fixed


Just the updated bitmap is written to disk

File system inconsistency: data bitmap says data block is used, 
but no inode points to it.  The block will never be used. Must 
be fixed

What if two writes 
succeed?

Inode and data bitmap updates succeed

Good news: file system is consistent!

Bad news: reading new block returns garbage


Inode and data block updates succeed

File system inconsistency. Must be fixed


Data bitmap and data block succeed

File system inconsistency

No idea which file data block belongs to!

The Consistent Update 
Problem

Several file systems operations update multiple 
data structures


Create new file

update inode bitmap and data bitmap

write new inode

add new file to directory file


Would like to atomically move FS from one 
consistent state to another 

Even  with write through we have a problem


Disk only commits one write at a time!



Solution 1: 

File System Checker
Ethos: If it happens, I’ll do something about it


 Let inconsistencies happen and fix them post facto

during reboot


Classic example: fsck

Unix, 1986

FSCK Summary
Sanity check the superblock


Is FS size larger than total blocks used by superblock 
+ inodes?

Is FS size “reasonable”?

iI the number fo free blocks and inodes in the 
superblock equal to the number of free blocks and 
inodes in the file system?

On inconsistencies, 


use another copy of the superblock

overwrite values in SB with those found in the file system

FSCK Summary
Sanity check the superblock

Check validity of free block and inode bitmaps


Scan inodes, indirect blocks, etc to understand which 
blocks are allocated

On inconsistency, override free block bitmap 
inconsistencies 

Perform similar check on inodes to update inode 
bitmap

FSCK Summary
Sanity check the superblock

Check validity of free block and inode bitmaps

Check that inodes are not corrupted


e.g., check type (dir, regular file, symlink, etc) field

if it can’t be fixed, clear inode and update inode 
bitmap



FSCK Summary
Sanity check the superblock

Check validity of free block and inode bitmaps

Check that inodes are not corrupted

Check inode links


Scan through the entire directory tree, recomputing 
the number of links for each file

If inconsistency, fix link count in inode

If no directory refers to allocated inode, move to 
lost+found directory

FSCK Summary
Sanity check the superblock

Check validity of free block and inode bitmaps

Check that inodes are not corrupted

Check inode links

Check for duplicates


two inodes pointing to the same block

clear one inode (if bad), or copy block

FSCK Summary
Sanity check the superblock

Check validity of free block and inode bitmaps

Check that inodes are not corrupted

Check inode links

Check for duplicates

Check directories


Check that . and .. are the first entries

Check that each inode referred to is allocated

Check that directory tree is a tree 


directory files must have a single link

FSCK Summary
Sanity check the superblock

Check validity of free block and inode bitmaps

Check that inodes are not corrupted

Check inode links

Check for duplicates

Check directories

S-L-O-W



Ad hoc solutions: 
user data consistency
Asynchronous write back


forced after a fixed interval (e.g. 30 sec)

can lose up to 30 sec of work


Rely on metadata consistency

updating a file in vi


delete old file

write new file

Ad hoc solutions: 
user data consistency
Asynchronous write back


forced after a fixed interval (e.g. 30 sec)

can lose up to 30 sec of work


Rely on metadata consistency

updating a file in vi


write new version to temp

move old version to other temp

move new version to real file

unlink old version


if crash, look in temp area and send “there may be a problem” email to user

Solution 2:

Ordered Updates

Three rules towards a (quickly) recoverable FS:

Never reuse a resource before nullifying all pointers 
to it

Never write a pointer before initializing the structure 
it points to

Never clear last pointer to live resource before setting 
a new one


How?

Keep a partial order on buffered blocks

Solution 2:

Ordered Updates

Example: Create file A:

Create file A in inode block X and directory block Y


“Never write a pointer before initializing the 
structure it points to”


Y cannot be written before X is

Y depends on X


Can delay both writes, as long as order is preserved

Suppose you create a second file B in blocks X and Y

Can write each block only once to cover both creates!

Y ! X



Problem: Cyclic 
Dependencies

Suppose you create file A, unlink file B

Both files in same directory block & inode block


Can’t write directory until inode A initialized

Or, after crash, directory will point to bogus inode

Worse, same inode no. might be reallocated


could end up with file name A being an unrelated file


Can’t write inode block until dir entry B cleared

Or B’s link count could become smaller than directory entries

File could be deleted while link to it still exist in directory

A principled approach: 
Transactions

Group together actions so that they are

Atomic: either all happen or none

Consistent: maintain invariants

Isolated: serializable (schedule in which transactions occur 
is equivalent to transactions executing sequentially

Durable: once completed, effects are persistent


Critical sections are ACI, but not Durable

Transaction can have two outcomes:


Commit: transaction becomes durable

Abort: transaction never happened


may require appropriate rollback

Solution 3: Journaling  
(write ahead logging)
Turns multiple disk updates into a single disk write


“write ahead” a short note to a “log”, specifying 
changes about to be made to the FS data structures

if a crash occurs while updating FS data structures, 
consult log to determine what to do


no need to scan entire disk!

Data Jounaling: 

an example

We start with


We want to add a new block to the file

Three easy steps


Write to the log 5 blocks:

write each record to a block, so it is atomic


Write the blocks for Iv2, B2, D2 to the FS proper [checkpoint]

Mark the transaction free in the journal


What if we crash before the log is updated?

if no commit, nothing made it into FS - ignore changes!


What if we crash after the log is updated?

replay changes in log back to disk!

0 1 0 0 0 0

inode bitmap

0 10 00 0

data bitmap

-- Iv1 -- -- -- --

i-nodes

-- -- -- -- D1 --

data blocks

TxBegin | Iv2 | B2 | D2 | TxEnd



Journaling and  
Write Order

Issuing the 5 writes to the log            
sequentially is slow 


Issue at once, and transform in a single sequential write!?

Problem: disk can schedule writes out of order


first write TxBegin, Iv2, B2, TxEnd

then write D2

TxBegin | Iv2 | B2 | D2 | TxEnd

Disk loses power

Log contains:

syntactically, transaction log looks fine, even with nonsense in 
place of D2!

TxBegin | Iv2 | B2 | ?? | TxEnd

TxEnd must block until prior blocks are on disk

Transaction committed when TxEnd on disk


