
Peeking Inside
Persistent storage modeled as a sequence of N blocks

from 0 to N-1

4KB in this example

0 7 8 15 16 23 24 31

32 39 40 47 48 55 56 63

some blocks store data

Peeking Inside
Persistent storage modeled as a sequence of N blocks

from 0 to N-1

4KB in this example

D D

0 7 8 15 16 23 24 31

32 39 40 47 48 55 56 63

D D

some blocks store data

other blocks store metadata (remember stat()?)

an array of inodes

at 256 bytes, 16 per block: file system can have up to 80 files

data nodes data nodes

data nodesdata nodesdata nodes

data nodes

data nodes

Peeking Inside
Persistent storage modeled as a sequence of N blocks

from 0 to N-1

4KB in this example

some blocks store data

I I I I I D

0 7 8 15 16 23 24 31

40 47 48 55 56 63

D D

data nodes data nodes

data nodesdata nodesdata nodes

data nodes

data nodes

inodes

32 39

other blocks store metadata (remember stat()?)

an array of inodes

at 256 bytes, 16 per block: file system can have up to 80 files

Peeking Inside
Persistent storage modeled as a sequence of N blocks

from 0 to N-1

4KB in this example

some blocks store data

i d I I I I I D

0 7 8 15 16 23 24 31

40 47 48 55 56 63

D D

data nodes data nodes

data nodesdata nodesdata nodes

data nodes

data nodes

inodes

32 39

free

lists

other blocks store metadata (remember stat()?)

an array of inodes

at 256 bytes, 16 per block: file system can have up to 80 files

two blocks with bitmaps tracking free inodes and data blocks

Peeking Inside
Persistent storage modeled as a sequence of N blocks

from 0 to N-1

4KB in this example

some blocks store data

S i d I I I I I D

0 7 8 15 16 23 24 31

40 47 48 55 56 63

D D

data nodes data nodes

data nodesdata nodesdata nodes

data nodes

data nodes

inodes

32 39

free

lists

other blocks store metadata (remember stat()?)

an array of inodes

at 256 bytes, 16 per block: file system can have up to 80 files

two blocks with bitmaps tracking free inodes and data blocks

superblock

The uperblock

One logical superblock per file system

at a well-known location.

contains metadata about the file system, including

how many inodes

how many data blocks

where the inode table begins

magic number identifying file system type

read first when mounting a file system

The inode

Low-level file name

Locating an inode on disk

 inode 32 is on sector 40

can you see why?

Super i-bmap d-bmap

0 1 2 3 16 17 18 19 32 33 34 35 48 49 50 51 64 65 66 67

4 5 6 7 20 21 22 23 36 37 38 39 52 53 54 55 68 69 70 71

8 9 10 11 24 25 26 27 40 41 42 43 56 57 58 59 72 73 74 75

12 13 14 15 28 29 30 31 44 45 46 47 60 61 62 63 76 77 78 79

iblock 0 iblock 1 iblock 2 iblock 3 iblock 4

0KB 4KB 8KB 12KB 16KB 20KB 24KB 28KB 32KB

sector : (inumber⇥sizeof (inode t))+ inodeStartAddr
sectorSize

<latexit sha1_base64="lZbA8PIsbTTA6+UwZ/rInRg+Qew=">AAACOnicdVDLTttAFB2ntKTpK5QlmxFRJVCjyC4IIkREEBuWVDQkUhxF4/E1jBh7rJlrpGD5a/gNNuz4A9QtG4TYAOIDmCTtgj7u6uicM/fOOUEqhUHX/emUXs28fjNbflt59/7Dx0/Vuc8HRmWaQ4crqXQvYAakSKCDAiX0Ug0sDiR0g+Odsd49AW2ESn7gKIVBzA4TEQnO0FLDat8AR6XpBvUjzXi+JJIsDkBTH0UMhvoxwyOBuRGnoKLCyioEf4jLy36dfqV+fULsI9O4HYa6yKf79q29GFZrXsOdDP0/qG09ttKzq0prb1i99EPFsxgS5JIZ0/fcFAe53S24hKLiZwZSxo/ZIeST6AX9YqmQRjZBpBKkE/aFj8XGjOLAOsdJzJ/amPyX1s8wag5ykaQZQsKnh6JMUlR03CMNhbZJ5cgCxrWwP6T8iNkK0bZdsdHdxsraqrfi0r/B7+gH3xreaqP53au1N8l0ymSBLJIl4pF10ia7ZI90CCcX5Ibckwfn3Ll2bp27qbXk/HozT16M8/QM+Wyx4w==</latexit>

The ext2 inode

(simplified)

Size Name What is this inode field for?

 2 mode can this file be read/written/executed?

 2 uid who owns this file?

 4 size how many bytes are in this file?

 4 time what time was this file last accessed?

 4 ctime what time was this file created?

 4 mtime what time was this file last modified?

 4 dtime what time was this inode deleted?

 4 gid which group does this file belong to?

 2 links_count how many hard links are there to this file?

 2 blocks how many blocks have been allocated to this file?

 4 flags how should ext2 use this inode?

 4 osd1 an OS-dependent field

60 block a set of disk pointers (15 total)

 4 generation file version (used by NFS)

 4 file_acl a new permissions model beyond mode bits

 4 dir_acl called access control lists

File structure
Each file is a fixed, asymmetric tree, with fixed
size data blocks (e.g. 4KB) as its leaves

The root of the tree is the file’s inode

contains a set of pointers

typically 15

first 12 point to data block

last three point to intermediate blocks, themselves
containing pointers

13: indirect pointer

14: double indirect pointer

15: triple indirect pointer

Multilevel index
Inode Array

Inode

File

metadata

Data
blocks

} 12 x
4KB =
48KB

indirect block

 contains pointers to data blocks

 4 Bytes entries
}1K x 4KB

= 4MB

double indirect block

 contains pointers to indirect blocks

} 1K x 1k x
4KB =
4GB

triple indirect block

 contains pointers to double indirect blocks } 1K x

1k x

1k x

4KB =
4TB

at known
location on disk

file number =
inode number =
index in the
array

Multilevel index:
key ideas

Tree structure

efficient in finding blocks

High degree

efficient in sequential reads

once an indirect block is read,
can read 100s of data block

Fixed structure

simple to implement

Asymmetric

supports efficiently files big
and small

File

metadata

Inode

array

Data

blocks

Why Unbalanced Trees?

(and other fun facts)

Most files are small

Average file size is growing

Most bytes are stored in large files

File systems contains lots of files

File systems are roughly half full

Directories are typically small

Roughly 2K is the most common size

Almost 200K is the average

A few big files use most of the space

Almost 100K on average

Even as disks grow, file system remain about 50% full

Many have few entries; most have 20 or fewer

Directory
A file that contains a collection of mapping from file
name to file number

To look up a file, find the directory that contains the
mapping to the file number

To find that directory, find the parent directory that
contains the mapping to that directory’s file number...

Good news: root directory has well-known number (2)

Documents

Music
griso.jpg

394

416
864

/Users/lorenzo ..
.

256
1061

Find file /Users/lorenzo/griso.jpg

Looking up a file

file 2

“/” bin 438

usr
Users 256

782

chiara 1197
maria
lorenzo 1061

294file 256

“/Users”

file 1061

“/Users/lorenzo”

Documents

griso.jpg

394

416

864

Music

file 864

“/Users/lorenzo/griso.jpg”

Directory Layout
Directory stored as a file

Linear search to find filename (small directories)

256 416 394 864

. .. Music

File 1061

/Users/lorenzo

Documents griso.jpg

1061 Free SpaceFree Space

End of File

Larger directories use B trees

searched by hash of file name

Reading a File
First, must open the file

open(“/CS4410/roster”, O_RDONLY)
Follow the directory tree, until we get to the inode
for “roster”

Read that inode

do a permission check

return a file descriptor fd

Then, for each read()
read inode

read appropriate data block (depending on offset)

update last access time in inode

update file offset in in-memory open file table for fd

Read first 3 data blocks
from /CS4410/roster
data

bitmap
inode
bitmap

root
inode

CS4410
inode

roster
inode

root data CS4410
data

roster

data[0]

roster
data[1]

roster
data[2]

open(CS4410)

read()

read()

read()

read()

read()

read()

read()

read()

write()

read()

read()

read()

write()

read()

read()

read()

write()

Writing a File
Must open the file, like before

But now may have to allocate a new data block

each logical write can generate up to five I/O ops

reading the free data block bitmap

writing the free data block bitmap

reading the file’s inode

writing the file’s inode to include pointer to the new block

writing the new data block

Creating a file is even worse!
read and write free inode bitmap

write inode

(read) and write directory data

write directory inode

and if directory
block is full,
must allocate
another block

Read first 3 data blocks
from /CS4410/roster

data
bitmap

inode
bitmap

root
inode

CS4410
inode

roster
inode

root

data

CS4410
data

roster

data[0]

roster
data[1]

roster
data[2]

create

(/CS4410/roster)

read()
read()

read()
read()

read()
write()

write()
read()
write()

write()

write()

read()
read()
write()

write()
write()

write()

read()
read()
write()

write()
write()

write()

read()
read()
write()

write()
write()

Caching

Reading a long path can cause a lot of I/O ops!

Cache aggressively!

early: fixed sized cache for popular blocks

static partitioning can be wasteful

current: dynamic partitioning via unified page cache

virtual memory pages and file system blocks in a single
cache

