Peeking Inside Peeking Inside

@ Persistent storage modeled as a sequence of N blocks

@ Persistent storage modeled as a sequence of N blocks
o from O to N-1

o from O to N-1
» 4KB in this example

» 4KB in this example
o some blocks store data

o some blocks store data

o other blocks store metadata (remember stat()?)
» an array of inodes

at 256 bytes, 16 per block: file system can have up to 80 files

data nodes data nodes

data nodes
[o]e]o]o]o]o]o]o] [o]o]o]o]p]o]o]0] [o]o]o]o]o]o]o]o]
8 15 16 23] 24 31
data nodes data nodes
[o[ofe]e[e[oo]o] [o]e]e[o[o]o]o]
) 47

48

data nodes

[o[e]o]o[o[o]o]o]
32

data nodes

o[o[ofo[o[o]o]o]

|
56

o]
55 63

Peeking Inside

Peeking Inside

@ Persistent storage modeled as a sequence of N blocks @ Persistent storage modeled as a sequence of N blocks
o from O to N-1 o from O to N-1
» 4KB in this example

» 4KB in this example
o some blocks store data

o some blocks store data
o other blocks store metadata (remember stat()?)

» an array of inodes

o other blocks store metadata (remember stat()?)
» an array of inodes
at 256 bytes, 16 per block: file system can have up to 80 files - at 256 bytes, 16 per block: file system can have up to 80 files

» two blocks with bitmaps tracking free inodes and data blocks
inodes

data nodes data nodes

data nodes r,:i: inodes data nodes data nodes data nodes
[[] DS EREEEEE EEEEEEE zEEESSE [[['EEEE EEEEEEEE PEEEEEEE EEEEEEEe
(o] v 8 15 16 23] 24 31 (o] v 8 15 16 23] 24 31
data nodes
[e[e[efofe[eo] [e]o[e[e]o[o]e]o]
40 47 48

data nodes

data nodes data nodes
[e[e[efo[e[eo] [e]o[e[e]o[o]e]o]
40 47

48

data nodes data nodes
[e]e]ofe]o]e]e]o] [e[o]e]ee]o]o]o]
32

39

[oe]o]o[o[o]o]o]
32

39

data nodes

data nodes
55 56

[elo[e]e]e]o]o[o]
55 56

63

63

Peeking Inside The ‘—Uuperblock

@ Persistent storage modeled as a sequence of N blocks
o from O to N-1 @ One logical superblock per file system

P SRR = example o at a well-known location.
o some blocks store data : 4 s

o contains metadata about the file system, including
o other blocks store metadata (remember stat()?) - haBany inodil

» an array of inodes
» how many data blocks
- at 256 bytes, 16 per block: file system can have up to 80 files

» two blocks with bitmaps tracking free inodes and data blocks WRhere the THod T

F A perbidek » magic number identifying file system type

lists inodes daa nodes daa nodes data nodes o read first when mounting a file system
‘s‘\‘d|1|1|1|1|1| [o]e]o]o]o]o]o]o] [o]o]o]o]p]o]o]0] [o]o]o]o]o]o]o]o]
(9] 7’ 8 15 16 23 24 31

data nodes data nodes data nodes data nodes

o[ofofe]o]o]o]o]

| [le[e[efo[o[e]o] [e[o]e[e[e]ofo[o] [e]o[e[e]e[o]o]e]
32 £) 47 48 55 56 63

The ext2 inode
(simplified)

Name What is this inode field for?
mode can this file be read/written/executed?

The inode

@ Low-level file name

n

uid who owns this file?

@ Locating an inode on disk

size how many bytes are in this file?

(inumber X sizeof (inode_t)) + inodeStart Addr
sectorSize

o sector : time what time was this file last accessed?

ctime what time was this file created?

; mtime what time was this file last modified?
iblock O iblock 1 iblock 2 iblock 3 iblock 4
2 17 [18 | 19 33|34 50 65 | 66
6 21|22|23[36|3738 54 69 | 70
10 25| 26| 27| 40| 41 | 42 58 73| 74
14 29|30 | 31| 44|45 |46 62 77|78

dtime what time was this inode deleted?

gid which group does this file belong to?

links_count how many hard links are there to this file?

blocks how many blocks have been allocated to this file?
flags how should ext2 use this inode?

osdl an OS-dependent field

block a set of disk pointers (15 total) }

generation file version (used by NFS)

N N R T S N N NN N}

o inode 32 is on sector 40

o
o

?
can you see Why‘ file_acl a new permissions model beyond mode bits

dir_acl called access control lists

File structure Multilevel index ..
Inode Array

@ Each file is a fixed, asymmetric tree, with fixed Inode [double indirect block

contains pointers to indirect blocks
File /
metadata
- \IK x 4KB
200 /l - [=4ms
4 Bytes entries 20

size data blocks (e.g. 4KB) as its leaves

@ The root of the tree is the files inode (\

3 4 @at known
o contains a set of pointers location on disk

» typically 15 ofile number =
inode number =
» first 12 point to data block Tl (0 o

array

» last three point fo intermediate blocks, themselves
containing pointers

- 13: indirect pointer
~ 14: double indirect pointer

— 15: triple indirect pointer

triple indirect block

contains pointers to double indirect blocks

INEEEEEEEENEEENEEENENNENEEEEEE

Multilevel index: Why Unbalanced Trees?
key ideas (and other fun facts)

Data

Do @ Most files are small
@ Tree structure Roughly 2K is the most common size

o efficient in finding blocks

Average file size is growing
| o ngh degree Almost 200K is the average

o efficient in sequential reads

O cirect Biatk is read, Most bytes are stored in large files

can read 100s of data block A few big files use most of the space

o Fixed structure File systems contains lots of files
o simple to implement Almost 100K on average

& Asymmetric File systems are roughly half full
o SuPpOl"fS eFﬁcien’rly files blg Even as disks grow, file system remain about 50% full

and small
Directories are typically small

Many have few entries; most have 20 or fewer

Directory Looking up a file

@ A file that contains a collection of mapping from file

narle TRl B e S @ Find file /Users/lorenzo/griso.jpg

/Users/lorenzo

, file 256
“/Users”

@ To look up a file, find the directory that contains the
mapping to the file number

@ To find that directory, find the parent directory that
contains the mapping to that directorys file number...

@ Good news: root directory has well-known number (2)

Directory Layout Reading a File

_ @ First, must open the file
@ Directory stored as a file o open(*/CS4410/roster”, 0_RDONLY)

D Linear search to find filename (small directories) o Follow the directory tree, until we get fo the inode

File 1000 for “roster”

/Users/lorenzo o Read that inode

» do a permission check

Music Documents griso.jpg

» return a file descriptor fd

1061 256 416 394 Free Space 864 Free Space

2)id 40 pu3

@ Then, for each read()
‘_T ‘_T ‘_1 i i read inode
read appropriate data block (depending on offset)

@ Larger directories use B trees update last access time in inode
update file offset in in-memory open file table for fd

0 searched by hash of file name

Read first 3 data blocks
from /CS4410/roster

CS4410 roster CS4410 roster roster roster [Buf now may have 1'0 a“ocafe a new dafa blOCk

inode inode e it data data[0] data[1] data[2]

Writing a File

@ Must open the file, like before

o each logical write can generate up to five I/0 ops

» reading the free data block bitmap

open(CS4410) ¢ » writing the free data block bitmap

» reading the files inode

» writing the files inode to include pointer to the new block

» writing the new data block

@ Creating a file is even worse!
and if directory
» read and write free inode bitmap block is full,
write inode " must allocate
another block

(read) and write directory data

write directory inode

Read first 3 data blocks
from /CS4410/roster

e e i “oote. | o) | dolh | aatos) @ Reading a long path can cause a lot of I/0 ops!

read()

Caching

@ Cache aggressively!
read()

create readd) o early: fixed sized cache for popular blocks

(/CS4410/roster) write()

writel) » static partitioning can be wasteful

read()

write()

o current: dynamic partitioning via unified page cache

read() g . .
read() | » virtual memory pages and file system blocks in a single

cache

write() | write) |

write()

write()

[read)

write() | |
| write) |

write()
| read)

write()

write()

