
Files & Directories

The File System
Abstraction

Presents applications with persistent, named data

Two main components:

files

directories

The File
A file is a named collection of data.

inode number: low-level name assigned to the file by
the file system

path: human friendly string

must be mapped to inode number, somehow

file descriptor

dynamically designed handle used by processes to refer to
inode

A file has two parts

data – what a user or application puts in it

array of untyped bytes

metadata – information added and managed by the OS

size, owner, security info, modification time

The Directory

A special file that stores mappings between human-
friendly names of files and their inode numbers

Has its own inode, of course

Mapping may apply to human-friendly
names of directories and their inodes

directory tree
Users bin

lorenzo irene ls

Duc1000s.
pdf

/

File System API
Creating a file

returns a file descriptor, a per-process integer that grants
process a capability to perform certain operations

int close(int fd); closes the file descriptor

Reading/Writing

return number of bytes read/written

repositions file’s offset (initially 0, updates on reads and writes)

to offset bytes (SEEK_SET)

to offset bytes from current offset (SEEK_CUR)

to offset bytes after the end of the file (SEEK_END)

int fd = open(“foo”, O_CREAT|O_RDWR|O_TRUNC, S_IRUSR|S_IWUSR);

path {
<latexit sha1_base64="I3xrejEZjtFheIrmieyu6hmbAX4=">AAAB33icdVDLSgMxFL1TX3V8VV26CRbB1TBji3ZhseDGZRX7gLaUTJppQzOTIckIZejajYgbBdf+jH8g/oZfYNrqoj4OXDiccy65J37MmdKu+25lFhaXlleyq/ba+sbmVm57p65EIgmtEcGFbPpYUc4iWtNMc9qMJcWhz2nDH55P/MYNlYqJ6FqPYtoJcT9iASNYG+mqnXZzec9xp0D/k/zZRzl+ebPL1W7utd0TJAlppAnHSrU8N9adFEvNCKdju50oGmMyxH2aTu8bowMj9VAgpJlIo6k6l8OhUqPQN8kQ64H66U3Ev7xWooNSJ2VRnGgakdlDQcKRFmhSFvWYpETzkSGYSGYuRGSAJSbafIltqrtO4bjoFVz0m3xXrx85XtEpXXr5yinMkIU92IdD8OAEKnABVagBgQDu4BGeLGzdWvfWwyyasb52dmEO1vMnY2CM5A==</latexit>

{
<latexit sha1_base64="I3xrejEZjtFheIrmieyu6hmbAX4=">AAAB33icdVDLSgMxFL1TX3V8VV26CRbB1TBji3ZhseDGZRX7gLaUTJppQzOTIckIZejajYgbBdf+jH8g/oZfYNrqoj4OXDiccy65J37MmdKu+25lFhaXlleyq/ba+sbmVm57p65EIgmtEcGFbPpYUc4iWtNMc9qMJcWhz2nDH55P/MYNlYqJ6FqPYtoJcT9iASNYG+mqnXZzec9xp0D/k/zZRzl+ebPL1W7utd0TJAlppAnHSrU8N9adFEvNCKdju50oGmMyxH2aTu8bowMj9VAgpJlIo6k6l8OhUqPQN8kQ64H66U3Ev7xWooNSJ2VRnGgakdlDQcKRFmhSFvWYpETzkSGYSGYuRGSAJSbafIltqrtO4bjoFVz0m3xXrx85XtEpXXr5yinMkIU92IdD8OAEKnABVagBgQDu4BGeLGzdWvfWwyyasb52dmEO1vMnY2CM5A==</latexit>

flags modes

ssize_t read (int fd, void *buf, size_t count);

ssize_t write (int fd, void *buf, size_t count);

offt_t lseek (int fd, off_t offset, int whence);

File System API
Writing synchronously

flushes to disk all dirty data for file referred to by fd

if file is newly created, must fsynch also its directory!

Getting file’s metadata

stat() , fstat() — return a stat structure

int fsynch (int fd);

 struct stat {
 dev_t st_dev; /* ID of device containing file */
 ino_t st_ino; /* inode number */
 mode_t st_mode; /* protection */
 nlink_t st_nlink; /* number of hard links */
 uid_t st_uid; /* user ID of owner */
 gid_t st_gid; /* group ID of owner */
 dev_t st_rdev; /* device ID (if special file) */
 off_t st_size; /* total size, in bytes */
 blksize_t st_blksize; /* blocksize for filesystem I/O */
 blkcnt_t st_blocks; /* number of blocks allocated */
 time_t st_atime; /* time of last access */
 time_t st_mtime; /* time of last modification */
 time_t st_ctime; /* time of last status change */
};

retrieved from
file’s inode

on disk, per-file
data structure

may be cached
in memory

File System API
Writing synchronously

flushes to disk all dirty data for file referred to by fd

if file is newly created, must fsynch also its directory!

Getting file’s metadata

stat() , fstat() — return a stat structure

int fsynch (int fd);

 struct stat {
 dev_t st_dev; /* ID of device containing file */
 ino_t st_ino; /* inode number */
 mode_t st_mode; /* protection */
 nlink_t st_nlink; /* number of hard links */
 uid_t st_uid; /* user ID of owner */
 gid_t st_gid; /* group ID of owner */
 dev_t st_rdev; /* device ID (if special file) */
 off_t st_size; /* total size, in bytes */
 blksize_t st_blksize; /* blocksize for filesystem I/O */
 blkcnt_t st_blocks; /* number of blocks allocated */
 time_t st_atime; /* time of last access */
 time_t st_mtime; /* time of last modification */
 time_t st_ctime; /* time of last status change */
};

retrieved from
file’s inode

on disk, per-file
data structure

may be cached
in memory

Old Friends

Remember fork()?
int main(int argc, char *argv[]){

int fd = open(“file.txt”, O_RD_ONLY);
assert (fd >= 0);
int rc = fork();
if (rc ==0) {

rc = lseek(fd, 10, SEEK_SET);
printf(“child: offset %d\n”, rc);

} else if (rc > 0) {
(void) wait(NULL);
printf(“parent: offset %d\n”,

(int) lseek(fd, 10, SEEK_CUR));
}
retunrn 0;

}

What does this code print?

Parent and child each have an
independent file descriptor

Though independent, both correspond
to the same integer (e.g., 3)

They both point to the same
entry in the OS’s Open File Table

An entry in that table looks like

struct file {

int ref;
char readable;
char writable
struct inode *ip
uint off

}

The reference count for file.txt
would be 2!

The Directory

The directory holds instances of two types of
mappings:

Hard links

map a file’s human-friendly name (its local path) to the
corresponding inode number

Symbolic (soft) links

maps a file’s human-friendly name (its local path) to the
number of an inode that contains the path name of a
different file

you can think of it as a hard link for a special file, that indeed OS
treats differently

Hard links
Creating file foo adds a hard link for file foo in the
file’s directory

 int link(const char *oldpath, const char *newpath)

adds a hard link mapping path newpath to the inode
number currently also mapped to file oldpath
invoked executing ln at the command line

Removing a file through the rm [file] command invokes
a call to int unlink(const char *pathname)

removes from directory the hard link between pathname
and corresponding inode number

Link count maintained in file’s inode

inode reclaimed (file deleted) only when link count = 0; if
file opened, wait to reclaim until file is closed

Hard link No-Nos

Creating a hard link to a directory

may create a cycle in the directory tree!

Creating a hard link to files in other volumes

inode numbers are unique only within a single file
system

Example

Example

…368

~/example/cornell

inode

Example

…368

~/example/cornell

~/example/bigred

Example

…368

~/example/cornell

~/example/bigred

~/b
esti

vy

Example

~/example/bigred

~/b
esti

vy

~/example/cornell

…368

Example

…368

~/example/cornell

~/example/bigred

~/b
esti

vy

Example
~/b

esti
vy

…368

Symbolic (Soft) links
More flexible than hard links

can link to a directory

can link to files in another volume

A map between pathnames

to link newpathname to existingpathname for file inode1:

create a hard link between newpathname and new file inode2

store in inode2 the existingpathname for inode1

so, a symbolic link is really a file (inode2 in our example) of
a third type

neither a regular file nor a directory

Created using ln, but with the -s flag

Example

Example …367

~/example/cornell Example …367

~/example/cornell ~/example/bigred

Example …367

~/example/cornell ~/example/bigred

~/bestiv
y

~/highabove

…138 Example …367

~/example/cornell ~/example/bigred

~/bestiv
y

~/highabove

…138

Example …367

~/example/cornell ~/example/bigred

~/bestiv
y

~/highabove

…138 Example …367

~/example/cornell ~/example/bigred

~/bestiv
y

~/highabove

…138

Example …367

~/example/bigred

~/bestiv
y

~/highabove

…138 Example …367

~/example/bigred

~/bestiv
y

~/highabove

…138

Permission Bits

File bestivy

leading - says bestiviy is a regular file

d is for directory; l is for soft link

Next nine characters are permission bits

rwx for owner, group, everyone

owner can read and write; group and others can just read

x set in a regular file means means file can be executed

x set in a directory that user/group/everybody is allow to cd to that
directory

can be set using chmod

Mount

Point

Mount

Mount: allows multiple
file systems on multiple
volumes to form a single
logical hierarchy

a mapping from some
path in existing file
system to the root
directory of the
mounted file system

USB

Volumes

/

Bin

Home

Lorenzo

Lorenzo’s

disk

Princess

Bride

Movies

/

Backup

USB Volume

