Why care?

HDD SSD

Require seek, rotate, No seeks

SSDS transfer on each 1/0 parallel

Not parallel (one head) No moving parts

Brittle (moving parts) Random reads take 10s

Slow (mechanical) of us
Poor random 1/0 (10s Wears out!
of ms)

The Cell Flash Storage

Single-level cells No moving parts
faster, more lasting (50K to 100K program/erase better random access performance
cycles*), more stable less power
0 means charge; 1 means no charge more resistant to physical damage
Oxide Bit stored here, .
Mu[ﬁ_[eve[Ce”s P— sidewall | |surrounded by an insulator
. o O i dite ifm-er(fpalyu y | [control gate Charge 20
can store 2, 3, even 4 bits boly v sironge posive | : =
voltage to control gate .
some electrons are tunneled into xide Floating gate
Cheaper +o manUFac+ure \"lzmtingl g:te " et ?un:el A Fowler-Nordheim funneling
wear out faster (1k to 10K program/erase cycles) N T
r sourcej resssinnnnnnnnn drain
P-Type substrate

more fragile (stored value can be disturbed by
accesses to nearby cells)

Flash Storage Flash Storage

No moving parts No moving parts
better random access performance better random access performance
less power less power
more resistant fo physical damage more resistant fo physical damage
Oxide Bit stored here, Oxide Bit stored here,
«= [sidewall | |Surrounded by an insulator + sidewall | |Surrounded by an insulator
Oxide/Nitride/Oxide l_ Oxide/Nitride/Oxide
To write 0 ONO inter-poly No charge =1 To write 0 ONO inter-poly No charge =1
apply positive voltage to drain dielectric (insulator) Control gate Charge = 0 apply positive voltage to drain dielectric (insulator) Control gate Charge = 0
apply even stronger positive apply even stronger positive
voltage to control gate) voltage to control gate . To read
some electrons are tunneled into Oxide Floating gate some electrons are tunneled into Oxide Floating gate apply positive (lower than write)
floating gate tunnel - Fowler-Nordheim tunneling floating gate tunnel - Fowler-Nordheim tunneling voltage to control gate
apply positive (lower than write)
N N — + N N L + voltage to drain
To write 1 r‘ source]" et et I drain To write 1 r‘ gourgel drain measure current between source
apply positive voltage to drain P-Type substrate apply positive voltage to drain P-Type substrate = and drain to determine whether
apply negative voltage to control apply negative voltage to control & electrons in gate
gate gate measured current can encode
electrons are forced out of electrons are forced out of more than a single bit
floating gate into source floating gate into source

The SSD

Storage Hierarchy Basic Flash Operations

Read (a page)
10s of us, independent of the previously read page

Erase (a block)
sets the entire block (with all its pages) to 1
very coarse way to write 1s...
1.5 to 2 ms (on a fast SLC)

v
&
\ Program (a page)
can change some of the bit in a page of an erased
block to O
Flash Chip Plane/Bank Block Page Cell 100s of us
Several banks that Many block 64 to 256 10 4 , , . : .
e (S“e'\‘,’;ml";s)s P:ges 2rogKkB - ° Erankc_:ljmg a 0 bit back to 1 requires erasing the entire
ock!

in parallel

Banks

Bank O Bdnk Bank 2 Bank 3

Program

one
page

After an Erase, all cells are
discharged (i.e., store 1s)

Bank O

Banks

Each bank contains

/ many blocks

Bank 2 Bank 3

Program

Program

Program

Block

Erase

Wear Out

Every erase/program cycle adds some charge to
a block; over time, hard to distinguish 1 from O!

If now we want to set this bit to 1,
we need to erase the entire block!

Modified pages must be
copied elsewhere, or lost!

APIs Performance
HDD Flash HDD Flash
©
S | read sector read page ~ 130MB/s |~200MB/s
= (sequential)
program page read 25us
o (0%) program
T | write sector ~ 10ms 200-300us
2 erase block erase
(1%) 1.5-2 ms

Throughput

Latency

From Flash to SSD

Caching and
Mapping tables

Memory Flash Flash Flash
\ \ \

Interface logic

Flash Flash Flash Flash

Controller | | |

) Device inferfuce» Control logic
(logical blocks, page-sized)

Flash Translation Layer

maps read/write operations on logical blocks into read,
erase, and program operations

tries to minimize
[write traffic (bytes) to flash chips]

write Gmpllﬁcﬂhon: L™ write traffic (bytes) fo SSD

wear out: practice wear leveling
disturbance: write pages in a block in order, low to high

FTL through
Direct Mapping

Just map logical disk block to physical page
reads are fine
write to logical block involves
reading the (physical) block where physical page lives
erasing the block

programming old pages as well as new page

Severe write amplification

writes are slow!

Poor wear leveling

page corresponding to “hot” logical block experiences
disproportionate number of erase/program cycles

Log Structured FTL

Think of flash storage as implementing a log

On a write, program next available page of
physical block being currently written

i.e., “append” the write to your log

On a read, find in the log the page storing the
logical block

dont want to scan the whole log...

keep an in—mems)hryd map from logical blocks to pages!

Mapping fable:

ssssssssss

aaaaaaaaaa

Example

SSDS clients read/write 4KB logical blocks

Many physical blocks; each holds 4 pages, each 4KB

Block
Page
Content

State

A logical block maps to a physical page

00

o1

00

02

03

04

o1
05

06

07

08

02
09 10 1

Client operations

Write (al, 100)

Example

SSDS clients read/write 4KB logical blocks

Many physical blocks; each holds 4 pages, each 4KB

A logical block maps to a physical page

Flash
Chip

1) Erase(00)

Table 100 > 00 Memory
Block 00 01 02
Page 00 o1 02 03 |04 05 06 07 | 08 09 10 1
Flash

Content

ontent | al Chip
State \% E E E i i i i i i i i

Write (al, 100)

Client operations

Example

SSDS clients read/write 4KB logical blocks

Many physical blocks; each holds 4 pages, each 4KB

Block
Page
Content

State

A logical block maps to a physical page

00

o1

00

02

03

04

o1
05

06

07

Flash
Chip

E

Client operations

Write (al, 100)

Example

2) Program(00)

SSDS clients read/write 4KB logical blocks

Many physical blocks; each holds 4 pages, each 4KB

A logical block maps to a physical page

Table 100 > 00 Memory
Block 00 01 02
Page 00 o1 02 03 |04 05 06 07 |08 09 10 1
Flash

Content

ontent | al Chip
State v E E E i i i i i i i i

Write (al, 100)

Client operations

Write (a2, 101)

3) Program(01)

Example

SSDS clients read/write 4KB logical blocks

Many physical blocks; each holds 4 pages, each 4KB

A logical block maps to a physical page

Example

SSDS clients read/write 4KB logical blocks

Many physical blocks; each holds 4 pages, each 4KB

A logical block maps to a physical page

Table 100 > 00 101 > 01 Memory
Block 00 o1 02
Page 00 o1 02 03 |04 05 06 07 | 08 09 10 1
Flash

Content

onten al | a2 Chip
State Vv Vv E E i i i i i i i i

Write (al, 100)

Client operations

Write (a2, 101)

Example

SSDS clients read/write 4KB logical blocks

Many physical blocks; each holds 4 pages, each 4KB

A logical block maps to a physical page

Table 100 > 00 101 > 01 2000 > 02 2001 > 03 Memory
Block 00 o1 02
Page 00 o1 02 03 |04 05 06 07 |08 09 10 1
Flash
Content
ontent [al | a2| bl b2 Chip
State v v \ Vv i i i i i i i i

Client operations

Write (al, 100)
Write (a2, 101)
Werite (bl, 2000)
Write (b2, 2001)

Example

SSDS clients read/write 4KB logical blocks

Many physical blocks; each holds 4 pages, each 4KB

A logical block maps to a physical page

Table 100> 00 101 » 01 2000 > 02 2001 > 03 Memory
Block 00 01 02
Page 00 01 02 03 |04 05 06 07 |08 09 10 U
Flash
content | al | a2| bl |b2 o
State Vv v \ Vv i i i i i i i i
Write (c1, 100)
Client operations Erase(01)

Table 100 > 00 101 > 01 2000 > 02 2001 > 03 Memory
Block 00 01 02

Page 00 o1 02 03 |04 05 06 07 |08 09 10 1

content | al | a2| bl |b2 e
State v Vv \ Vv E E E E i i i i

Client operations

Write (cl, 100)

Program(04)

SSDS clients read/write 4KB logical blocks
Many physical blocks; each holds 4 pages, each 4KB

Example

A logical block maps to a physical page

SSDS clients read/write 4KB logical blocks
Many physical blocks; each holds 4 pages, each 4KB

A logical block maps to a physical page

Example

Table 100 > 00 101 > 01 2000 > 02 2001 > 03 Memory
Block 00 01 02
Page 00 o1 02 03 |04 05 06 07 |08 09 10 1
content | al [a2| bl |b2 | cl e
State \ \ \ \ \' E E E i i i i

Write (cl, 100)

Client operations

Example

SSDS clients read/write 4KB logical blocks

Many physical blocks; each holds 4 pages, each 4KB

A logical block maps to a physical page

Table 100 > 04 101 > 01 2000 > 02 2001 > 03 Memory
Block 00 01
Page 00 o1 02 03 [04 05 06 07
content | al [a2| bl |b2 | cl e
State \ \ \ \ \ E E E

Write (cl, 100)

Client operations

Example

SSDS clients read/write 4KB logical blocks

Many physical blocks; each holds 4 pages, each 4KB
A logical block maps to a physical page

Table 100 > 04 101 > 05 2000 > 02 2001 > 03 Memory
Block 00 01 02

Page 00 Ol 02 03 [04 05 06 07 [08 09 10 1

content | al [a2| bl b2 | cl |c2 i
State \ \ \ \ \2 \ E E i i i i

Client operations

Write (c1, 100)
Write (c2, 101)
Write (bl, 2000)
Write (b2, 2001)

Table 100 > 04 101 > 05 2000 > 02 2001 > 03 Memory
Block 00 01

Page 00 Ol 02 03|04 05 06 07

content | al [a2| bl b2 | cl |c2 e
State \ \ \ \ \ \ E E

Client operations

Write (cl, 100)
Write (c2, 101)

Garbage Collection

Reclaim dead blocks
find a block with garbage pages
copy elsewhere the blocks live pages

store somewhere in block mapping from page to
logical block (the “reverse mapping”)

use Mapping Table to distinguish live pages from dead
make block available for writing again

Table 100 > 04 101> 05 2000 > 02 2001 > 03 Memory

Block 00 o1 02

Page 0 o 02 o03)os 05 o6 o7)os 09 10 1 Flash

Canfaml al | aZl bl |b2 cl |c2 | | | | | Chip

State v v v
Table 100 > 04 101> 05 2000 > 06 2001 > 07 Memory
Block
Page 0 o1 02 o03fos 05 o6 o7] os 09 10 u Flash

Cunieml | | a | c2 | bl |b2 Chip

State

PRE M Shrinking the
Jibk il VE Mapping Table

Per-page mapping is memory hungry
1TB SSD, 4KB pages, 4B MTEs: 1GB Mapping Table!

chunk number page

per-b lOCk map pi n g? (size of physical block) offset
think of logical block address as [TTT1-[T1]

block size]

decreases MT size by factor [+oeim

Table 200004 2001 05 2002 > 06 2003 > 07 Memory
Block
Pnge 00 01 02 03 04 05 06 o7 08 09 10 11 Flash
cOnreml | | | a|b|c|d | | | Chip
State i i i i v v v v i i i i
maps virtual chunk number to physical block
Table 500> 04 Memory
Block 00 o1 02

00 o 02 03fos 05 o6 o7 | o8 09 10 u

Page Flash
et | | | [ofe]c]e [|
State i i i i v v v v

chip

PRE M Shrinking the

Il W VS Mapping Table

Per-page mapping is memory hungry

1TB SSD, 4KB pages, 4B MTEs: 1GB Mapping Table!

PRE M Shrinking the

Jith il Y E Mapping Table

Per-page mapping is memory hungry

Per-block mapping?
think of logical block address as [TTT1-[T1]

1TB SSD, 4KB pages, 4B MTEs: 1GB Mapping Table!

chunk number
(size of physical block) offse

pag

e
+

decreases MT size by factor [fees]
reading is easy
Table 500 > 04 Memory
Block 00 01 02
Page 00 o1 02 03 [04 05 06 o7 08 09 10 1
Content alb c d 2:,,5:
State i i i \ Vv \ \ i i i i

PRE M Shrinking the | |
el W VUHE Mapping Table Hybrid Mapping

Per-page mapping is memory hungry Log Table: a small number of per-page mappings
1TB SSD, 4KB pages, 4B MTEs: 1GB Mapping Table! Data Table: a large number of per-block mappings
Per-block mapping? s e, On read
think of logical block address as [TTT1-[T1] search for block in Log Table; then go to Data Table
decreases MT size by factor [l Periodically, *do the switch”
reading is easy turn Log Table blocks with freshest values into Data
but writes smaller than a block require a Table blocks
erase/program cycle! turn Data Table blocks with dead values into Log Blocks

For wear leveling, periodically read and copy
elsewhere long-lived, live data

Caching Performance

Keep page-mapped FTL, but only keep in memory Huge difference between SSD
the active part of the Mapping Table and HDD for random 1/0 Random sequential
same idea as demand paging Not so much for sequential I/0 seice | Reads | writes | Reads | writes
(MB/s) (MB/s) (MB/s) (MB/s)
On a miss, must perform another flash read On SSDs
Pyl 103| 287 421 384
to bring in the mapping sequential still better than random 40Pro SSD
FS design tradeoffs for HDD still apply 65:;95“:) 84 252 424 374
If cache is full, must evict a mapping sequential reads perform better
. . . . than writes Pliui 39| 222|344 354
if mapping not on flash yet, need an additional write! _
sometimes you have to erase seagate Sawlo
random writes perform much 15K.3 HOD 2 2 223 223

better than random reads

log transform random into sequential

