Why care?

HDD S50

Require seek, rotate, No seeks

transfer on each I/0
Parallel

Not parallel (one head) No. mgEEpeLis

ey Random reads take 10s

Slow (mechanical) of us

Poor random I/0 (10s Wears out!
of ms)

The Cell Flash Storage

@ Single-level cells @ No moving parts

o faster, more lasting (50K to 100K program/erase o better random access performance
cycles*), more stable o less power

o O means charge; 1 means no charge 0 more resistant to physical damage

Oxide Bit stored here,
sidewall | |surrounded by an insulator

@ Multi-level cells Oxide/Nitride/Oxide

To write 0 ONO inter-poly 3 3 No charge =1
a apply positive voltage to drain dielectric (insulator) Control SH' Charge = 0
o can store 2, 3, even 4 bits o apply even SToo et :

voltage to control gate

Cheaper 1.0 manUFaCfure 1 :‘loo::inze;::ns it flo:i;g i Fowler-Nordheim funneling
wear out faster (1k to 10K program/erase cycles) SR N +

more fragile (stored value can be disturbed by L

accesses to nearby cells)

Flash Storage Flash Storage

@ No moving parts @ No moving parts
o0 better random access performance o better random access performance
o less power o less power
o more resistant to physical damage o more resistant to physical damage

Oxide Bit stored here, Oxide Bit stored here,
= |sidewall | |surrounded by an insulator 4 [sidewall | |surrounded by an insulator
Oxide/Nitride/Oxide l— Oxide/Nitride/Oxide
To write 0 ONO inter-poly o 3 No charge = 1 To write 0 ONO inter-poly 5 3 No charge = 1
 apply positive voltage to drain dielectric (insulator) CD[}TFO[gat Charge = 0 apply positive voltage to drain dielectric (insulator) Control gat Charge = 0
- @ apply even stronger positive -

@ apply even stronger positive
voltage to control gate voltage to control gate To read

@ some electrons are tunneled into Oxide Floating gate @ some electrons are tunneled into Oxide Floating gate © apply positive (lower than write)
floating gate tunnel ni Fowler-Nordheim tunneling floating gate tunnel o Fowler-Nordheim funneling voltage to control gate
= @ apply positive (lower than write)
+ + voltage to drain

© measure current between source

To write 1 P_T: bstrat To write 1
 apply positive voltage to drain e/ pHbsars apply positive voltage to drain

© apply negative voltage to control © apply negative voltage to control n electrons in gate
gate gate O measured current can encode

@ electrons are forced out of @ electrons are forced out of more than a single bit
floating gate into source

P-Type substrate

and drain fo determine whether

floating gate into source

The SSD

Storage Hierarchy Basic Flash Operations

@ Read (a page)
o 10s of us, independent of the previously read page

@ Erase (a block)

'L

o3 & | o sets the entire block (with all its pages) fo 1

oo N
" > ()
' @ Program
D 3 ogram (a page

» . 9 o can change some of the bit in a page of an erased
block to O

Flash Chip Plane/Bank Block Page Cell 100s of us

Severa SRRl M > SR 208Kk lto4 changing a 0 bit back to 1 requires erasing the entire
can be accessed (Several Ks) pages bits block!
ock!

in parallel

O very coarse way to write Is...
o 1.5 to 2 ms (on a fast SLC)

Banks

Each bank contains

/ many blocks

B_an_l_(% -

Program Program

After an Erase, all cells are
discharged (i.e., store 1s)

Program

Program

|

O

If now we want to set this bit to 1,
we need to erase the entire block!

APIs

HDD

Flash

Performance

HDD

Flash

|

L Ll

read sector

read page

=~ 130MB/s

(sequential)

~200MB/s

|

il 111

Wear Out

write sector

program page
(05)

erase block

(15)

=~ 10ms

read 25us
program
200-300us
erase
1.5-2 ms

Modified pages must be
copied elsewhere, or lost!

Throughput

Latency

Every erase/program cycle adds some charge to
a block; over time, hard tfo distinguish 1 from O!

From Flash to SSD

Caching and
Mapping tables

Interface logic

Device interface

4 4 Control logic
(logical blocks, page-sized)

@ Flash Translation Layer

o maps read/write operations on logical blocks into read,
erase, and program operations
tries to minimize

. . . . [Write traffic (bytes) fo flash chips
> write ﬂmPllﬁCﬂﬁOn. L™ write traffic (bytes) fo SSD]

» wear outf: practice wear leveling

» disturbance: write pages in a block in order, low to high

» reading the (phyS shere physical page i li
» erasing the block

\<

Periences

FTL through
Direct Mapping

@ Just map logical disk block i to physical page @
O reads are fine
o write to logical block i involves
» reading the (physical) block where physical page i lives
» erasing the block

» programming old pages as well as new page @

@ Severe write amplification

o writes are slow!

@ Poor wear leveling

o page corresponding to “hot” logical block experiences
disproportionate number of erase/program cycles

Log Structured FTL

@ Think of flash storage as implementing a log

@ On a write, program next available page of
physical block being currently written
o i.e., “append” the write to your log

@ On a read, find in the log the page storing the
logical block
o dont want to scan the whole log...

o keep an in-memory map from logical blocks to pages!

Example

@ SSDS clients read/write 4KB logical blocks

@ Many physical blocks; each holds 4 pages, each 4KB
A logical block maps to a physical page

Block
Page

Content

State i i i i i i i i

1) Erase(00)

@ Client operations

[Write (a1, 100)

Example

@ SSDS clients read/write 4KB logical blocks

@ Many physical blocks; each holds 4 pages, each 4KB
A logical block maps to a physical page

Table 100 > 00

Block
Page

Content

State

Write (al, 100)
@ Client operations

Example

@ SSDS clients read/write 4KB logical blocks

@ Many physical blocks; each holds 4 pages, each 4KB
A logical block maps to a physical page

Block
Page

Content

State i i i i

2) Program(00)

Write (al, 100)
@ Client operations

Example

@ SSDS clients read/write 4KB logical blocks

@ Many physical blocks; each holds 4 pages, each 4KB
A logical block maps to a physical page

Table 100 > 00

Block
Page

Content

State

Write (al, 100)

@ Client operations { Write (e 100 3) Program(01)

Example

@ SSDS clients read/write 4KB logical blocks
@ Many physical blocks; each holds 4 pages, each 4KB

Example

@ SSDS clients read/write 4KB logical blocks
@ Many physical blocks; each holds 4 pages, each 4KB

Table

A logical block maps to a physical page

100 > 00 101 > 01

Memory

Table

A logical block maps to a physical page

100 > 00 101 > 01

2000 > 02

2001 > 03

Memory

Block
Page
Content
State

00

01

02

03

al

a2

\

\

E

()

Block
Page
Content
State

(0]0)
01

02

03

04

01
05

al

a2

bl

b2

\

\

\

\

Write (al, 100)
Write (a2, 101)

@ Client operations [

Example

@ SSDS clients read/write 4KB logical blocks

@ Many physical blocks; each holds 4 pages, each 4KB
A logical block maps to a physical page

Write (al, 100)

H : Write (a2, 101)
@ Client operations {Wr”e o

Write (b2, 2001)

Example

@ SSDS clients read/write 4KB logical blocks

@ Many physical blocks; each holds 4 pages, each 4KB
A logical block maps to a physical page

Table

100 > 00 101 > 01

2000 > 02

2001 > 03

Block
Page
Content

State

(0]0)

01

02

03

04

05

(0]

07

al

a2

bl

b2

"

\

\

"

Table

100 > 00 101 > 01

2000 > 02

Block
Page
Content
State

(0]0)

01

02

03

04

(0]
05

al

a2

bl

b2

\

\

\

"

Write (c1, 100)

Erase(01)

@ Client operations

Write (c1, 100)

Program(04)

@ Client operations

Example

@ SSDS clients read/write 4KB logical blocks

@ Many physical blocks; each holds 4 pages, each 4KB

Table

A logical block maps to a physical page

100 > 00

101 » 01

2000 > 02

2001 > 03

Memory

Example

@ SSDS clients read/write 4KB logical blocks

@ Many physical blocks; each holds 4 pages, each 4KB

Table

A logical block maps to a physical page

100 > 04

101 » 01

2000 > 02

2001 > 03

Memory

Block
Page

00

01 02

03

04

01
05

06

07

Block
Page
Content

(0]0)

01 02

03

04

01
05

06 07

al

a2

bl

b2

cl

Content
State

al

a2

bl

b2

cl

\

\

\

"

\"

E

E

E

State

\

\

\

\

\

E

E E

@ Client operations

[Write (c1, 100)

Example

@ SSDS clients read/write 4KB logical blocks

@ Many physical blocks; each holds 4 pages, each 4KB
A logical block maps to a physical page

Table 100 > 04 101 > 05 2000 > 02 2001 > 03

Write (cl, 100)
@ Client operations

Example

@ SSDS clients read/write 4KB logical blocks

@ Many physical blocks; each holds 4 pages, each 4KB
A logical block maps to a physical page

Table 100 > 04 101 > 05 2000 > 02 2001 > 03

Block
Page
Content

State

(0]0)
01

02

03

04

(0]
05

06

07

al

a2

bl

b2

cl

c2

"

\

\

"

\"

\

E

E

Block
Page
Content

State

(0]0) (0]

Ol

02

03

04

05

06 07

al

a2

bl

b2

cl

c2

\

\

\

"

\

\

E E

Write (c1, 100)
Write (c2, 101)
Werite (bl, 2000)
Write (b2, 2001)

@ Client operations

Write (c1, 100)

@ Client operations { Write (c2, 101)

Garbage Collection

@ Reclaim dead blocks
o find a block with garbage pages
o copy elsewhere the block's live pages

» store somewhere in block mapping from page to
logical block (the “reverse mapping”)

» use Mapping Table to distinguish live pages from dead

o make block available for writing again

Table 100 > 04 101> 05 2000 > 02 2001 > 03 Memory

Block 00 [}

00 o1 02 o03fos o0 06 o7] o8
Page 0! o) Flash
Conteml al | a2 | bl | b2 | cl | c2 | | Chip
State v, v v v v \4 3 - i

Table 100 > 04 101> 05 2000 > 06 2001 » 07

Block o1

Cl|C2|b1|b2

v v v v]i

B H G Shrinking the
TARITTIITE Mapping Table

@ Per-page mapping is memory hungry
o 1TB SSD, 4KB pages, 4B MTEs: 1GB Mapping Table!

o per-blOCk mapplng? chunk number page

(size of physical block) offset

o think of logical block address as NN -

block size]

o decreases MT size by factor [tee

Table 2000 > 04 2001> 05 2002 > 06 2003 » 07 Memory

Block 00 02
Pagz 07 08 09 10
st A

State

Chip

| “— Flash

maps virtual chunk number to physical block

0 J0 i i
Table 500> 04
Block 00
Page 00 o1 02 03) os 05 06 o7] o 09
Comenfl | | | a c
TN i i T .0 i

State

B G Shrinking the
TARIITITE Mapping Table

@ Per-page mapping is memory hungry
o 1TB SSD, 4KB pages, 4B MTEs: 1GB Mapping Table!

B G Shrinking the
TARITITE Mapping Table

@ Per-page mapping is memory hungry
o 1TB SSD, 4KB pages, 4B MTEs: 1GB Mapping Table!

o per-blOCk mapplng? chunk number page

(size of physical block) offset

o think of logical block address as NN -

block size]

0 decreases MT size by factor [+
» reading is easy

Table 500 > 04 Memory

Block
Page

Content

State

B G Shrinking the
TERITTIITE Mapping Table

@ Per-page mapping is memory hungry

o 1TB SSD, 4KB pages, 4B MTEs: 1GB Mapping Table!

@ Per-block mapping? churk rumber pege

(size of physical block) offset
o

o think of logical block address as NN NN
o decreases MT size by factor [teec]
» reading is easy

» but writes smaller than a block require a
erase/program cycle!

Caching

@ Keep page-mapped FTL, but only keep in memory
the active part of the Mapping Table

0 same idea as demand paging

@ On a miss, must perform another flash read
o to bring in the mapping

@ If cache is full, must evict a mapping

o if mapping not on flash yet, need an additional write!

Hybrid Mapping

@ Log Table: a small number of per-page mappings

@ Data Table: a large number of per-block mappings

@ On read

o search for block in Log Table; then go to Data Table

@ Periodically, "do the switch”

o turn Log Table blocks with freshest values into Data

Table blocks

o furn Data Table blocks with dead values into Log Blocks

@ For wear leveling, periodically read and copy
elsewhere long-lived, live data

Performance

Huge difference between SSD
and HDD for random 1/0

Not so much for sequential I/0

On SSDs

o sequential still better than random
» FS design tradeoffs for HDD still apply

sequential reads perform better
than writes

» somefimes you have fo erase

random writes perform much
better than random reads

log transform random into sequential

Device

Random

Reads
(MB/s)

Writes
(MB/s)

Sequential

Reads
(MB/s)

Writes
(MB/s)

Samsung
840Pro SSD

103

287

421

384

Seagate
600 SSD

84

252

424

Intel SSD
335 SSD

39

222

344

374

Seagate Savvio
15K.3 HDD

2

2

223

