Disk Drive Schematic

Typically 512 bytes
spare sectors added for fault tolerance

data on a track
can be read Track Block/Sector
without moving
arm

track skewing
staggers logical
address 0 on
adjacent one to
account for time
to move head

Disk Read/Write

@ Present disk with a sector address
o Old: CHS = (cylinder, head, sector)
o New abstraction: Logical Block Address (LBA)
» linear addressing 0..N-1
@ Heads move fo appropriate track
o seek

o settle
o Appropriate head is enabled

@ Wiait for sector to appear under head

o rotational latency

@ Read/Write sector

o transfer time

—— =

Ve

Disk access time:

~N

Disk Drive Schematic

Typically 512 bytes
spare sectors added for fault tolerance

reads by sensing a magnetic field

data on a track
can be read
without moving
arm

track skewing
staggers logical
address 0 on
adjacent one to
account for time
to move head

set of tracks on different
surfaces with same track index

writes by creating one

floats on air cushion created by
Block/Sector spinning disk

— Arm
|_~assembly

Platter

thin cylinder that holds

magnetic material
201875520081 5000IREN each platter has two surfaces

Disk Read/Write

@ Present disk with a sector address
o Old: CHS = (cylinder, head, sector)
o New abstraction: Logical Block Address (LBA) <R N

» linear addressing 0..N-1

@ Heads move fo appropriate track

S

o seek (and though shalt approximately find)

o settle (fine adustments)

o Appropriate head is enabled

@ Wiait for sector to appear under head

o rotational latency

@ Read/Write sector

o transfer time

“)

Disk access time:

seek time +

Disk Read/Write

@ Present disk with a sector address
o Old: CHS = (cylinder, head, sector)
o New abstraction: Logical Block Address (LBA)
» linear addressing 0..N-1
@ Heads move to appropriate track
o seek (and though shalt approximately find)

Disk Read/Write

@ Present disk with a sector address
o Old: CHS = (cylinder, head, sector)
o New abstraction: Logical Block Address (LBA)
» linear addressing 0..N-1
@ Heads move to appropriate track
o seek (and though shalt approximately find)

o settle (fine adustments)

o settle (fine adustments) N

o Appropriate head is enabled Disk access time: @ Appropriate head is enabled Disk access time:

© Wait for sector to appear under head © Wait for sector to appear under head

seek time + seek time +

o rotational latency o rotational latency

rotation time + rotation time +

@ Read/Write sector @ Read/Write sector

o transfer time o transfer time transfer time

A closer look:
seek time

How did we get that?

@ To compute average seek time, add distance
between every possible pair of tracks and divide
by total number of pairs

@ Minimum: time fo go from one track fo the next
o 0.3-1.5 ms

@ Maximum: time to go from innermost to outermost track o assuming N tracks, N? pairs, and sum of distances is

N N
ZZ |z —y| which we compute as /

@ Average: average across seeks between each possible pair e
of tracks

o more than 10ms; up fo over 20ms N

N
/ |z — y|dy dz
0 Jy=0

o approximately time to seek 1/3 of the way across disk

How did we get that?

@ To compute average seek time, add distance
between every possible pair of tracks and divide
by total number of pairs

o assuming N tracks, N2 pairs, and sum of distances is

ZZ\l—yl which we compute as / / |z — y|dy dx
0

ar=0) =0
i)

o The inner integral expands Jro/ (x —)dy+/ (y — x)dy
y=0 =

which evaluates to 2?/2 + (N?/2 — xn + 2?/2)

A closer look:
seek time

Minimum: time fo go from one track fo the next
o 0.3-1.5 ms

Maximum: time to go from innermost to outermost track

o more than 10ms; up fo over 20ms

Average: average across seeks between each possible pair

of tracks

o approximately time to seek 1/3 of the way across disk
time to move from track ¢ on one

surface to the same track on a different surface

o range similar fo minimum seek fime

How did we get that?

@ To compute average seek time, add distance
between every possible pair of tracks and divide
by total number of pairs

o assuming N tracks, N2 pairs, and sum of distances is

ZZ |z —y| which we compute as / / |z — y|dy dz

z=0y=0

o The inner integral expands fo/ (z —)dy+/ (y — x)dy
y=0 ="

which evaluates to 2?/2 + (N?/2 — xn + 2% /2)

N
o The outer integral becomes / (> + N?/2 — zn) = N3/3
z=0

which we divide by the number of pairs to obtain N/3

A closer look:
rotation time

@ Today most disk rotate at 4200 to 15,000 RPM
o =15ms to 4ms per rotfation

o good estimate for rotational latency is half that amount

@ Head starts reading as soon as it settles on a track

o track buffering to avoid “shoulda coulda” if any of the
sectors flying under the head turn out to be needed

A closer look:
transfer time

@ Surface transfer time ® Small cache (8 to 16 MB) that holds data

o Time to transfer one or more sequential sectors to/ o read from disk
from surface after head reads/writes first sector o about to be written to disk

Buffer Memory

0 Much smaller that seek time or rotational latency
» 512 bytes at 100MB/s = 5us (0.005 ms)
o Lower for outer tracks than inner ones

@ On write
o write back (return from write as soon as data is cached)

» same RPM, but more sectors/track: higher bandwidth! o write through (return once it is on disk)

® Host transfer time

o time to transfer data between host memory and disk
buffer

» 60MB/s (USB 2.0) to 2.5GB/s (Fibre Channel 20GFC)

Example:
Toshiba MK3254GSY ...

Computing I/0 time

TI/O i Tseek = Trotation ol Ttransfer

Platters/Heads 2/4
Capacity 320GB

@ The rate of 1/0 is computed as

Si Spindle speed 7200 RPM
R il LZ€Transfer
I1/0 — T1/0 Avg. seek time R/W 10.5/12.0 ms
Max. seek time R/W 19 ms
Track-to-track 1 ms
Surface transfer time 54-128 MB/s
Host transfer time 375 MB/s
Buffer memory 16MB

Typical 16.35 W
Idle 11.68 W

500 Random Reads

@ Workload
o 500 read requests, randomly chosen sector
Platters/Heads 2/4 o served in FIFO order

Capacity 320GB .
@ How long to service them?

Spindle speed 7200 RPM o 500 times (seek + rotation + transfer)

Avg. seek time R/W 10.5/12.0 ms o Sseek time: 105,08

Max. seek time R/W 19 ms o rotation time:

» 7200 RPM =120 RPS

Track-to-track I ms
> rotation time 8.3 ms

Surface transfer time 54-128 MB/s » on average, hall bt I e

Host transfer time 375 MB/s ransfoling

Buffer memory 16MB . at least 54 MB/s

512 bytes transferred in (.5/54,000) seconds = 9.26us

Typical 16.35 W Total time:

Idle 11.68 W 500 x (10.5 + 4.15 + 0.009) = 7.33 sec

Ryjo = S0x8x10°MB _ (034 M B/s

Disk Head Scheduling

@ In a multiprogramming/time sharing environment, a
queue of disk I/Os can form

‘(surface, track, sec’rqr)

& . Te-—

@ OS maximizes disk I/0 throughput by minimizing
head movement through disk head scheduling

o and this time we have a good sense of the length of
the tfask!

500 Sequential Reads

@ Workload

o 500 read requests for sequential sectors on the

Platters/Heads 2/4 same track

Capacity 320GB o served in FIFO order

i ?
Spindle speed 7200 RPM @ How long to service them?

Avg. seek time R/W 10.5/12.0 ms o seek + rotation + 500 times transfer

Max. seek time R/W 19 ms o seek time: LSRRI

tation time:
Track-to-track 1 ms R 1T

> 4.15 ms, as before

Surface transfer time 54-128 MB/s)
transfer time

Host transfer time 375 MB/S outer track: 500 x (.5/128000) =~ 2ms

Buffer memory 16MB inner track: 500 x (.5/54000) seconds = 4.6ms
Total time is between:

Typical 16.35 W outer track: (2 + 4.15 + 10.5) ms = 16.65 ms

Ryjo = 200x5X10MB _ 1502 MB/s

Idle 11.68 W

inner track: (4.6 + 4.15 + 10.5) ms = 19.25 ms

Ryjo = 300X8x10°MB _ 19 99 \[B/s

FCFS

@ Assume a queue of request exists to read/write
tracks

weee|83[72|14 |147] 16 10| and the head is on track 65

75 100 125 150

FCFS scheduling results in disk head moving 550 tracks

and makes no use of what we know about the length of the tasks!

SSTF:
Shortest Seek Time First

@ Greedy scheduling

Rearrange queue From:| 83 |72 | 14 |147| 16 |150|

to: -"'|14|16|150|147|83|72|

15 25 50 65 75 100 125 150

OMNININ
U\W\/J

Head moves 221 tracks BUT B OS knows blocks, not
tracks (easily fixed)

o starvation

C-SCAN scheduling

@ Circular SCAN

o sweeps disk in one direction (from outer to inner track),

then resets to outer track and repeats e

® More uniform wait time than SCAN

o moves head to serve requests that are likely
to have waited longer

SCAN Scheduling
“Elevator”

@ Move the head in one direction until all requests
have been serviced, and then reverse

o sweeps disk back and forth

Rearrange queue from: =eee] 83 [72] 14 [147] 16 [150]

to: ----|1so| 147| 83|72| 14| 16|

0 15 25 50 65 75 100 125 150

OIDINNINIEE -
SiE ST

Head moves 187 tracks.

Outsourcing
Scheduling Decisions

@ Selecting which track to serve next should include
rotation time (not just seek time!)

o SPTF: Shortest Positioning Time First

@ Hard for the OS to estimate rotation time accurately

o Hierarchical decision process
» OS sends disk controller a batch of “reasonable” requests

» disk controller makes final scheduling decisions

E Pluribus Unum

Implement the abstraction of a faster, bigger and more
reliable disk using a collection of slower, smaller, and
more likely to fail disks

o different configurations offer different tradeoffs

RAID Key feature: transparency

o tfo the OS looks like a single, large, highly performant and

Redundant Array of Inexpensive* Disks high(7ireliablesSIHEEER

* In industry, “inexpensive” has been replaced by “independent” :-) > alinear array of blocks
» mapping needed to get to actual disk

» cost: one logical I/0 may translate into multiple physical I/0s

In the box:

o microcontroller, DRAM (to buffer blocks) [sometimes non-
volatile memory, parity logic]

Failure Model How to Evaluate a RAID

@ RAIDs can detect and recover from certain kinds @ Capacity

of failures o what fraction of the sum of the storage of its

e o . . . e
@ Adopt the strong, somewhat unrealistic Fail-Stop consSNIidisks does ThElRP makecigieRte

failure model @ Reliability

o component works correctly until it crashes, o How many disk fault can a specific RAID configuration
permanently folerate?

» disk is either working: all sectors can be read and written o Performance

» or has failed: it is permamently lost
: e » o Workload dependent
o failure of the component is immediately detected

» RAID controller can immediately observe when a disk has
failed

RAID-0: Striping

Spread blocks across disks using round robin

‘--‘ -_.‘ -_.‘ -_.‘
S S———- S S——

Stripe

Stripe
Stripe
Stripe 12

+ Excellent parallelism — high positioning time

RAID-0: Evaluation

@ Capacity
o Excellent: N disks of B blocks: RAID-0 exports
NxB blocks
@ Reliability

o Poor: Any disk failure causes data loss

@ Performance
o Workload dependent, of course
o We'll consider two
» Sequential: single disk transfers S MB/s
» Random: single disk transfer R MB/s
> S > R (50 times higher in your textbook example!)

RAID-0: Striping

Spread blocks across disks using round robin

8 10 12
9 1 13

+ lower positioning time — lower parallelism

RAID-0: Performance

@ Single-block read/write throughput

o about the same as accessing a single disk

@ Latency
o Read: T ms (latency of one 1/0 op to disk)
o Write: T ms

o Steady-state read/write throughput
o Sequential: N x S MB/s
o Random: N x R MB/s

RAID-1: Mirroring

Each block is replicated twice

0
-
4
6

Read from any Write to both

RAID-1: Performance

@ Steady-state throughput
o Sequential Writes: N/2 x S MB/s
» Each logical W involves two physical W

o Sequential Reads: N/2 x S MB/s
‘ Suppose we want to read

|
3| 01,23 4567
| 5]
3

> o |

E a9

(0]
2
A
6

RAID-1: Evaluation

@ Capacity
o Poor: N disks of B blocks yield (N x B)/2 blocks
@ Reliability

0 Good: Can tolerate the failure of any one disk

» and if you can pick who fails, can tolerate up to N/2
disk failures [NOT ROBUST!]

@ Performance
o Fine for reads: can choose any disk

o Poor for writes: every logical write requires writing
to both disks

» suffers worst seek+rotational delay of the two writes

RAID-1: Performance

@ Steady-state throughput
o Sequential Writes: N/2 x S MB/s
» Each logical Write involves two physical Writes

o Sequential Reads: N/2 x S MB/s

Suppose we want to read
0, 1, 2, 384uSnE 7

Each disk only delivers half of his bandwidth
o Random Writes: N/2 x R MB/s
» Each logical Write involves two physical Writes
o Random Reads: N x R MB/s

» Reads can be distributed across all disks

@ Latency for Reads and Writes: T ms

RAID-4: Block Striped,
with Parity

Data disks Parity disk

Stripe O

Stripe O

Stripe 4

Stripe 4

Stripe 8

Stripe 12

1)1
o1l
0|0

RAID-4: Evaluation

@ Capacity

o Pretty good: N disks of B blocks yield (N-1) x B
blocks

@ Reliability

o0 Pretty Good: Can tolerate the failure of any one
disk

@ Performance

o Fine for sequential read/write accesses and random
reads

o Random writes are a problem!

RAID-4: Block Striped,
with Parity

Data disks Parity disk

Stripe 8

Stripe 12

1)1 1 0 1 0
o1 0
0|0 [1 il 1

Disk controller can identify faulty disk
O single parity disk can detect and correct errors

RAID-4: Performance

o Sequential Reads: (N-1) X S MB/s
D Sequential Writes: (N-1) x S MB/s
» compute & write parity block once for the full stripe
o Random Read: (N-1) x R MB/s
o Random Writes: R/2 MB/s (Yikes!)
» need to read block from disk and parity block
» Compute Prew = (Boid XOR Bnew) XOR Poid
» Write back Bnew and Prew

» Every logical I/O requires two physical I/Os: every disk can
at most achieve 1/2 of its random transfer rate (i.e. R/2)

Every write must go through parity disk, eliminating any
chance of parallelism — and we are stuck with R/2!

@ Latency: Reads: T ms; Writes: 2T m

RAID-5: Rotating Parity RAID-5: Evaluation

@ Capacity & Reliability
Parity and Data distributed across all disks o s AniEEEl

@ Performance

D Sequential read/write accesses as in RAID-4

o Random Reads are slightly better

» N x R MB/s (instead of (N-1) x R MB/s)

o Random Writes much better than RAID-4: R/2 x N/2

> as in RAID-4 writes involve two operation at every disk:
each disk can achieve at most R/2

but, without a bottleneck parity disk, we can issue up to
N/2 writes in parallel (each involving 2 disks)

