Local vs. Global
Page Replacement

Local: Select victim only among allocated
frames

Think Global,
Act Local (?)

Equal or proportional frame allocation

Global: Select any free frame, even if
allocated to another process

Processes have no control over their own
page fault rate

19

Brother, can you
spare a frame?

Brother, can you
spare a frame?

FIFO

Time 41516 8 1011112 Time (Of 1| 2 4156|789 (10|11]12
Requests dlalb d blecld Requests alb d|la|b|c|d|a|[bfc]|d
5 11dld R o 1 b | b e O]a a alala|lala|la|la|a]|a
& l1|blb|b b|b|b|b|b|b|b|b|b
1 b|a d djc|c L 2cjc|c clc|lclclc|lcfc]|c]|c
2 clc|b b afajd 3|-|- |- d|d|d|d|d|d|d]|d]|d

Faults X[X|[X X X[X[X Faults X

120

So, what's wrong with global replacement?

121

Demand May
Exceed Resources

Demand paging enables frames to cache the
currently used part of a process VA space

If the cache is large enough, hit ratio is high

few page faults

What if not enough frames to go around?

should decrease degree of multiprogramming
release frames of swapped out processes

reduce contention over limited resources

122

What May
Happen Instead

When not enough frames...
high page fault rate
low CPU utilization

OS may increase degree of multiprogramming!

Thrashing
process spends all its
time swapping pages
in and out

CPU Utilization

124 Degree of Multiprogramming

What May
Happen Instead

When not enough frames...
high page fault rate
low CPU utilization

OS may increase degree of multiprogramming

123

Locality of Reference

If a process access a memory location, then
it is likely that

the same memory location is going to be accessed
again in the near future (temporal locality)

nearby memory locations are going to be
accessed in the future (spatial locality)

90% of the execution of a program is sequential

Most iterative constructs consist of a relatively small
number of instructions

125

Tracking Locality The Working Set Model

When a process executes it moves from locality Define a WS window of A references

(set of pages used together) to locality Goal: Keep in memory a process’ WS

the size of the process’ locality (a.k.a. its WS; = distinct pages referenced in latest A
working set) can change over time A too small does not cover locality

Goal: track the size of the process’ working sef, A too large covers many localities

dynamically acquiring and releasing frames as
necessary

Thrashing if WS > # frames

if so, swap out one of the processes

If enough free frames, increase degree of

" multiprogramming

WS Page Replacement WS Page Replacement
A = 4 A = 4

Time 0 112(3|4|5|6|7|8|9]10 Time 0 112(3|4|5|6|7|8|9]10
Requests clc|d|[bfc|e|lc|e]|a]|d Requests clc|d|[bfc|e|lc|e]|a]|d
g\ Pagea | e g Pagea | @ Jo|e e o | o
§ Pageb £ Page b o|o|e]|e

E Page c é Page c oo | oo | oo |[0o]|eo|[e]|e

® Page d ° S Page d ° o | o | o | o] o] e °

o o

S Pagee | o S Pagee| o | o o |o]|eo]|e
Faults Faults X X X X | X

® page fault & page mapped to a frame ® page fault & page mapped to a frame

® page mapped to a frame

® page mapped to a frame
128 ® page referenced & mapped to a frame 129 ® page referenced & mapped to a frame

Computing the WS

Use interval timer , the R bit, and extra bits
per page
Define

When elapses, shift right once the bits,
copy R bit in most significant bit, and reset R

If one of the bits is 1, the corresponding
page is in WS

130

PFF Page Replacement

Time O J1]12(3|4|5|6)7|8|9]10
Requests clc|d|[bfc|e|lc|e]|a]d
g Pagea | *

£ Page b
E Page ¢
é.” Paged | o
g Pagee | o

Faults

132

WS and
Page Fault Frequency

When too many page faults, increase WS; when
too few, decrease it

Keep time of last page fault
On page fault:
1) add faulting page to the working set
threshold
2) if , then unmap all pages not
L referenced in [])

131

PFF Page Replacement

Time O J1|2(3|4|5|6|7|8|9]10
Requests clc|d|[bfc|e|lc|e|a]|d
Pagea] © [°|[°]|°

Page b o

Page ¢ L2 T I)

qued ° o | oo | e

Pages in Memory

Page e o Joe|[eo]oe

Faults X X

133

PFF Page Replacement

Time

10

Requests

Page a
Page b
Page ¢
Page d

Pages in Memory

Page e

Faults

134

You Need to
Get Out More!

I/O D€ViC€S HQW does a c?mpufer connect !

with the outside world?

Interacting

I/0 Architecture with a Device

cPu MEM Graph =~ CcPU - MEM
Memory Bus
I Registers meeF an Data
PCle (what the OS s
General 1/0 Bus 1/0 Abef‘dCflOﬂ
(PcT) CHIP (Ih at the
’_1 nfernals
) (what is needed to
Graph > implement the absfrachon)
Peripheral 1/0 Bus @

| | é | (SCSI, SATA USB)

Interacting
with a Device

Registers];nfﬁe F EGG&

Data

(what the OS sees)

Internals

(what is needed to
implement the abstraction)

Interacting
with a Device

Command

Registers ‘ Status

Data ‘

Microcontroller

Memory In*ernals

Other device (what is needed to
specific chips implement the abstraction)

OS controls device by
reading/writing registers

while (STATUS == BUSY)
; // wait until device is not busy
write data to DATA register
write command to COMMAND register
// starts device and executes command
while (STATUS == BUSY)
; // wait until device is done with request

Interacting
with a Device

Command ‘ Data ‘

Registers ‘ Status ‘

Microcontroller

emry Internals

Other device (what is needed to
specific chips implement the abstraction)

Tuning It Up

CPU is polling
use interrupts

run another process while
device is busy

what if device returns
very quickly?

CPU is copying all the
data to and from DATA

use Direct Memory Access
(DMA)

while (STATUS == BUSY)

; // wait until device is not busy
write data to DATA register
write command to COMMAND register

// starts device and executes command
while (STATUS == BUSY)

; // wait until device is done with request

From interrupt-driven I/0
to DMA

Interrupt driven 1/0
Device cPU RAM

for
CPU issues read request

device interrupts CPU with
data

CPU writes data to memory

Disk

Communicating
with devices

Explicit I/0 instructions (privileged)

in and out instructions in x86

Memory-mapped 1/0
map device registers to memory location

use memory load and store instructions to read/
write to registers

From interrupt-driven 1/0
to DMA

Interrupt driven 1/0 + Direct Memory Access
Device cPU RAM Device RAM
for CPU sets up DMA request
CPU issues read request Device puts data on bus &

device interrupts CPU with RAM accepts it
data Device interrupts CPU

when done

CPU writes data to memory

How can the OS handle
a multitude of devices?

File System Stack (simplified)

i |
Abstraction! Application -
Encapsula're device speciﬁc POSIX API [open, read, write, close, etc]
. : Kernel
interactions in a device driver | File System
T T i
Implement device neutral Block Cache

interfaces above device drivers

Generic Block Layer
Humans are about 70% Protocol-specific Block Intert,
water... Device Driver [SCSI, ATA, etc]

..0Ss are about 70% device

- Memory-mapped 1/0, DMA, Interrupts
drivers!

Physical Device

Persistent Storage

The Oldest Library?

Ashurbanipal, King of Assyria (668-630 bc)

Storage Devices

We focus on two types of persistent storage
magnetic disks
servers, workstations, laptops
flash memory
smart phones, tablets, cameras, laptops
Other exist(ed)

tapes o .
drums

clay tablets

Magnetic disk

Store data magnetically on thin metallic film
bonded tfo rotating disk of glass, ceramic, or
aluminum

	6f1.WhiteMM
	6f2.WhiteMM

