Local vs. Global
Page Replacement

@ Local: Select victim only among allocated

Think Global, e

D Equal or proportional frame allocation

AC.I' LOCCll (?) @ Global: Select any free frame, even if

allocated to another process

D Processes have no control over their own
page fault rate

Brother, can you Brother, can you
spare a frame? spare a frame?

Time

Time

Requests

Requests

0]
1
2

Oja

1
2
3

Faults

So, what’s wrong with global replacement?

121

Demand May
Exceed Resources

@ Demand paging enables frames to cache the
currently used part of a process VA space

@ If the cache is large enough, hit ratio is high

o few page faults

@ What if not enough frames to go around?

D should decrease degree of multiprogramming
> release frames of swapped out processes

» reduce contention over limited resources

122

What May
Happen Instead

® When not enough frames...
D high page fault rate
o low CPU ufilization
o OS may increase degree of multiprogramming!
@ Thrashing

O process spends all its
time swapping pages
in and out

CPU Utilization

Degree of Multiprogramming

What May
Happen Instead

® When not enough frames...
o high page fault rate
o low CPU utilization
o OS may increase degree of multiprogramming!

Locality of Reference

@ If a process access a memory location, then
it is likely that

o the same memory location is going to be accessed
again in the near future (temporal locality)

D0 nearby memory locations are going to be
accessed in the future (spatial locality)

@ 90% of the execution of a program is sequential

@ Most iterative constructs consist of a relatively small
number of instructions

Tracking Locality The Working Set Model

@ When a process executes it moves from locality @ Define a WS window of A references

(set of pages used together) to locality o Goal: Keep in memory a process’ WS

o the size of the process’ locality (a.k.a. its WS; = distinct pages pi referenced in latest A
working set) can change over time o A too small does not cover locality

@ Goal: track the size of the process’ working sef, = LsfooargeNCor Y L el

dynamically acquiring and releasing frames as o Thrashing if ;WS; > # frames

necessary '
o if so, swap out one of the processes

@ If enough free frames, increase degree of

multiprogramming

WS Page Replacement WS Page Replacement
A - 4 A = 4

Time K} Time

Requests b Requests

Page a Page a

Page b Page b

Page ¢ Page ¢

Page d Page d

Pages in Memory
Pages in Memory

Page e Page e | o

Faults Faults X X

® page fault & page mapped to a frame ® page fault & page mapped to a frame

® page mapped to a frame ® page mapped to a frame

® page referenced & mapped to a frame ® page referenced & mapped to a frame

Computing the WS

@ Use interval timer 7, the R bit, and k extra bits
per page
@ Define A=7xk

@ When 7 elapses, shift right once the k bits,
copy R bit in most significant bit, and reset R

@ If one of the k bits is 1, the corresponding
page is in WS

PFF Page Replacement

.=

Time

Requests

Page a

Page b

Page ¢

Page d

Pages in Memory

Page e

Faults

t(:nrrent O tlast

WS and
Page Fault Frequency

@ When foo many page faults, increase WS; when
too few, decrease it

<
Keep time tiast of last page fault

On page fault:
1) add faulting page to the working set

threshold

H *
2) if tcurrent — tlast > 7, then unmap all pages not
referenced in [tlashtcurrent]

PFF Page Replacement

.=

Time

Requests

Page a

Page b

Page ¢

Page d

Pages in Memory

Page e

Faults

7f(:urrent O tlast

PFF Page Replacement

You Need to

Get Out More!
- —

with the outside world?

I/O DeViCeS @ How does a computer connect z%(= ¢

Interacting

I/O Architecture with a Device

Peripheral I/0 Bus i
| | | (SCSI, SATA USB)

Interacting Interacting
with a Device with a Device

Inferfdce Registers ‘ Status ‘ Command ‘ Data

(what the OS sees)

Microcontroller

Internals Internals

(what is needed to Ofhertaice (what is needed to
implement the abstraction) specific chips implement the abstraction)

Interacting
with a Device

@ OS controls device by @ CPU is polling
reading/writing registers o debifieraiie

while (STATUS == BUSY) o run another process while

Registers ‘ Status | | Command ‘ Data ; // wait until device is not busy device is busy

write data to DATA register what if device returns

write command to COMMAND register very quickly’?

oo Infernals // starts device and executes command
er device hat i ded t hi ATUS == BUSY q q
. [e whilEETA R @ CPU is copying all the

specific chips implement the abstraction) ; o - q
; // wait until device is done with request
data to and from DATA

Microcontroller

o use Direct Memory Access
(DMA)

Tuning It Up

while (STATUS == BUSY)
; // wait until device is not busy
write data to DATA register
write command to COMMAND register
// starts device and executes command
while (STATUS == BUSY)

; // wait until device is done with request

From interrupt-driven I/0 From interrupt-driven I/0
to DMA to DMA

@ Intferrupt driven I/0 @ Interrupt driven I/0 @ + Direct Memory Access

o Device ¢ CPU 45 RAM o Device 4—% CPU 4% RAM o Device ¢——p RAM

for (i=1...n) for (i=1...n) » CPU sets up DMA request

» CPU issues read request » CPU issues read request » Device puts data on bus &

» device interrupts CPU with » device interrupts CPU with S cep's it

data data Device interrupts CPU

» CPU writes data to memory » CPU writes data to memory WA &

@ o ... (LI

o
[

Communicating How can the OS handle
with devices a multitude of devices?

@ Explicit I/0 instructions (privileged) :)
File System Stack (simplified

o in and out instructions in x86 o AbstrobRHl

[Memory—mapped I/O o Encapsulate device specific
interactions in a device driver

Application
- e =r =TT el User
- POSIX API [open, read, write, close, eic] [rrmemmrnn

Kernel

it
B

~ File System
— Generic Block Inferface Igbi!l;@ﬁ:miijg]; L

D0 map device registers to memory location .
Implement device neutral Block Cache

o use memory load and store instructions to read/ interfaces above device drivers

write to registers Generic Block Layer

@ Humans are about 70% — Profocol-specific Block Inferface
water... Device Driver [SCSI, ATA, efc]

o ..0Ss are about 70% device

5 Memory-mapped 1/0, DMA, Interrupts
drivers!

Physical Device

Persistent Storage

The Oldest Library?

@ Ashurbanipal, King of Assyria (668-630 bc)

Storage Devices

@ We focus on two types of persistent storage
o magnetic disks
» servers, workstations, laptops
o flash memory
» smart phones, tablets, cameras, laptops
@ Other exist(ed)

o tapes
o drums

o clay fablets

Magnetic disk

@ Store data magnetically on thin metallic film
bonded tfo rotating disk of glass, ceramic, or
aluminum

	6f1.MM
	6f2.MM

