
Demand Paging

Demand Paging
Code pages are stored in a memory-mapped
file on the backing store

some are currently in memory–most are not

Data and stack pages are also stored in a
memory-mapped file

OS determines what portion of VAS is
mapped in memory

physical memory serves as cash for memory-
mapped file on backing store

94

Demand Paging:

Touching Valid but not Present Address

1. TLB Miss (HW managed)

2. Page Table walk

3. Page fault (Present bit P

not set in Page Table)

4. Exception to kernel to

run page-fault handler

5. Convert VA to file offset

6. Allocate page frame

(evict page if needed)

7. Initiate disk block read

into page frame

8. Disk interrupt when
transfer completes

9. Set P to 1 and update
PFN for page’s PTE

10. Resume process at
faulting instruction

11. TLB miss

12. Page Table walk –

success!

13. TLB updated

14. Execute instruction

95

Allocating a Page Frame
When free frames fall below Low Watermark, do until
they climb above High Watermark:

Select “victim” page VP to evict (a policy question)

Find all PTEs referring to frame VP maps to

if page frame was shared

Set P bit in each such PTE to 0

Remove any TLB entries that included VP’s victim frame

the PTE they are caching is now invalid!

Write changes to page back to disk

Transferring pages in bulk allows to reduce transfer time
96

Page Replacement

Local vs Global replacement

Local: victim chosen from frames of process
experiencing page fault

fixed allocation per process

Global: victim chosen from frames allocated to
any process

variable allocation per process

Many replacement policies

Random, FIFO, LRU, Clock, Working set, etc.

Goal: minimizing number of page faults

97

How do we pick a victim?

We want:

low fault-rate for pages

page faults as inexpensive as possible

We need:

a way to compare the relative performance
of different page replacement algorithms

some absolute notion of what a “good” page
replacement algorithm should accomplish

98

Comparing Page
Replacement Algorithms

Record a trace of the pages accessed by a
process

E.g. 3,1,4,2,5,2,1,2,3,4 (or c,a,d,b,e,b,a,b,c,b)

Simulate behavior of page replacement
algorithm on trace

Record number of page faults generated

99

Optimal Page Replacement

Replace page needed furthest in future

Time 0 1 2 3 4 5 6 7 8 9 10
Requests c a d b e b a b c d

0 a
1 b
2 c
3 d

Faults
Time page

needed next

Pa
ge

 F
ra

m
es a

b

c

d

a

b

c

d

a

b

c

d

a

b

c

d

a

b

c

e

X

a

b

c

e

a

b

c

e

a

b

c

e

a

b

c

e

d

b

c

e

X

a = 7

b = 6

c = 9

d = 10

a = ∞

b = 11

c = 13

e = 15

b d c b e

100

FIFO Replacement

Replace pages in the order they come into memory

Time 0 1 2 3 4 5 6 7 8 9 10
Requests c a d b e b a b c d

0 a
1 b
2 c
3 d

Faults

Pa
ge

 F
ra

m
es a

b

c

d

a

b

c

d

a

b

c

d

a

b

c

d

e

b

c

d

X

e

b

c

d

e

a

c

d

X

e

a

b

d

X

e

a

b

c

X

d

a

b

c

X

Assume:

a @ -3

b @ -2

c @ -1

d @ 0

101

+ Frames
- Page Faults

Number of frames

Nu
m
be

r
of

 p
ag

e
fa

ul
ts

102

For example...

3 frames - 9 page faults!

Time 0 1 2 3 4 5 6 7 8 9 10 11 12
Request

s
a b c d a b e a b c d e

0

1

2

Faults

Pa
ge

 F
ra

m
es a

X

a

b

X

a

b

c

X

d

b

c

X

d

a

c

X

d

a

b

X

e

a

b

X

e

a

b

e

a

b

e

c

b

X

e

c

d

X

e

c

d

FI
FO

103

Belady’s Anomaly

4 frames - 10 page faults!

Time 0 1 2 3 4 5 6 7 8 9 10 11 12
Request

s
a b c d a b e a b c d e

0
1
2
3

Faults
Pa

ge
 F

ra
m
es a

X

a

b

X

a

b

c

X

a

b

c

d

X

a

b

c

d

a

b

c

d

e

a

c

d

X

e

a

b

d

X

e

a

b

d

X

e

a

b

c

X

d

a

b

c

X

d

e

b

c

X

FI
FO

104

+ Frames
- Page Faults?

Yes, but only for stack page replacement policies

set of pages in memory with n frames is a subset of
set of pages in memory with n+1 frames

Number of frames

Nu
m
be

r
of

 p
ag

e
fa

ul
ts

105

Locality of Reference

If a process access a memory location, then
it is likely that

the same memory location is going to be accessed
again in the near future (temporal locality)

nearby memory locations are going to be
accessed in the future (spatial locality)

90% of the execution of a program is sequential

Most iterative constructs consist of a relatively small
number of instructions

106

LRU: Least Recently Used
Replace page not referenced for the longest time

Time 0 1 2 3 4 5 6 7 8 9 10
Requests c a d b e b a b c d

0 a
1 b
2 c
3 d

Faults
Time page

last used

Pa
ge

 F
ra

m
es a

b

c

d

a

b

c

d

a

b

c

d

a

b

c

d

a

b

e

d

X

a

b

e

d

a

b

e

d

a

b

e

d

a

b

e

c

X

a = 2

b = 4

c = 1

d = 3

a = 7

b = 8

e = 5

d = 3

a = 7

b = 8

e = 5

c = 9

a

b

d

c

X

107

Implementing LRU

Maintain a “stack” of recently used pages

Time 0 1 2 3 4 5 6 7 8 9 10
Requests c a d b e b a b c d

0 a

1 b

2 c
3 d

Faults

Pa
ge

 F
ra

m
es a

b

c

d

a

b

c

d

a

b

c

d

a

b

e

d

X

a

b

e

d

a

b

e

d

a

b

e

d

a

b

e

c

X

a

b

c

d

a

b

d

c

X

c a
c

d
a
c

b
d
a
c

e
b
d
a

b
e
d
a

a
b
e
d

b
a
e
d

c
b
a
e

d
c
b
a

c d ePage to replace

LRU Page Stack

108

No-Locality Workload

Workload references
100 unique pages over
time

10,000 references

Next page chosen at
random

Hi
t

Ra
te

Cache Size (Blocks)

OPT
LRU
FIFO

RAND

100%

80%

60%

40%

20%

20 40 60 80 100

Cache size (blocks)

What do you notice?

80%-20% Workload

10,000 references, but
with some locality

80% of references to
20% of the pages

20% of references to
the remaining 80% of
pages.

Hi
t

Ra
te

100%

80%

60%

40%

20%

20 40 60 80 100

Cache size (blocks)

OPT
LRU
FIFO

RAND

What do you notice?

Sequential-in-a-loop
Workload

10,000 references

We access 50 pages in
sequence, then repeat,
in a loop.

20 40 60 80 100

Cache size (blocks)

Hi
t

Ra
te

100%

80%

60%

40%

20%

OPT
LRU
FIFO

RAND

FIFO &

LRU

What do you notice?

FIFO, OPT

RAND & LRU

Implementing LRU
Add a (64-bit)
timestamp to
each page table
entry

HW counter
incremented on
each instruction

Page table entry
timestamped with
counter when
referenced

Replace page with
lowest timestamp

112

Implementing LRU
Add a (64-bit)
timestamp to
each page table
entry

HW counter
incremented on
each instruction

Page table entry
timestamped with
counter when
referenced

Replace page with
lowest timestamp

Approximate LRU through aging

keep a k-bit tag in each table entry

at every “tick”:

If needed, evict page with lowest tag

11000000

10000000

01000000

00000000

11000000

01000000

11100000

11000000

00100000

10000000

01100000

11110000 01111000

01100000

00100000

01000000

10110000

10110000

10001000

00100000

01011000

10100000 01010000 00101000

1 0 1 0 1 1

R bits at

Tick 0

1 1 0 0 1 0

R bits at

Tick 1

0 1 1 0 0 01 1 0 1 0 1

R bits at

Tick 2

1 0 0 0 1 0

R bits at

Tick 4

R bits at

Tick 5

10000000

00000000

10000000

00000000

10000000

10000000

Page 0

Page 1

Page 2

Page 3

Page 4

Page 5

i) Shift tag right one bit

ii) Copy Referenced (R) bit in tag

iii) Reset Refereced bits to 0

113

The Clock Algorithm
Organize pages in memory
as a circular list

When page is referenced,
set its reference bit R to 1

On page fault, look at page
the hand points:

if R = 0:

evict the page

set R bit of newly
loaded page to 1

else (R = 1): clear R

advance hand

1 4

Page 0

1 11 12

0 7

1 2

0 5

Page 4

Page 1

Page 5

Page 2

Page 3

R bit

frame #
114

Clock Page Replacement

Time 0 1 2 3 4 5 6 7 8 9 10
Requests c a d b e b a b c d

0 a
1 b
2 c
3 d

Faults

Pa
ge

 F
ra

m
es a

b

c

d

a

b

c

d

a

b

c

d

a

b

c

d

1 a
1 b
1 c
1 d

Page table entries

for resident pages

Hand clock:

e

b

c

d

X

1 e
0 b
0 c
0 d

e

b

c

d

1 e
1 b
0 c
0 d

e

b

a

d

X

1 e
0 b
1 a
0 d

1 e
1 b
1 a
0 d

e

b

c

d

e

b

a

c

X

1 e
1 b
1 a
1 c

d

b

a

c

X

1 d
0 b
0 a
0 c

115

The Second Chance Algorithm
Dirty pages get “second
chance” before eviction

synchronously replacing
dirty pages is expensive!

1 1 4

Page 0

0 1 11 1 12

0 0 7

0 1 2

1 0 5

Page 4

Page 1

Page 5

Page 2

Page 3

R bit
frame #

dirty R
0 0
0 1
1 0
1 1

dirty R
replace page
0 0
0 0
1 0

If clock’s hand points at
P and this is P’s state…

…this is what
happens

dirty bit116

[Start asynchronous transfer
of dirty page to disk]

Second Chance

Page Replacement

Time 0 1 2 3 4 5 6 7 8 9 10
Requests c aw d bw e b aw b c d

0 a
1 b
2 c
3 d

Faults

Pa
ge

 F
ra

m
es a

b

c

d

a

b

c

d

a

b

c

d

a

b

c

d

01 a
01 b
01 c
01 d

Page table entries

for resident pages

Hand clock:

a

b

e

d

X

11 a
11 b
01 c
01 d

00 a
00 b
01 e
00 d

00 a
01 b
01 e
00 d

a

b

e

d

a

b

e

d

a

b

e

d

a

b

e

c

X

a

d

e

c

X

11 a
01 b
01 e
00 d

11 a
01 b
01 e
01 c

00 a
01 d
00 e
00 c

117Async copy:

