Demand Paging

@ Code pages are stored in a memory-mapped
file on the backing store

O some are currently in memory-most are not

Demand Paging

@ Data and stack pages are also stored in a
memory-mapped file

® OS determines what portion of VAS is
mapped in memory

D physical memory serves as cash for memory-
mapped file on backing store

94

Demand Paging:

Touching Valid but not Present Address

Allocating a Page Frame

@ When free frames fall below Low Watermark, do until
they climb above High Watermark:

1. TLB Miss (HW managed) 8. Disk interrupt when
transfer completes

9. Set P to 1 and update Select “victim” page VP to evict (a policy question)
PFN for pages PTE
10. Resume process at
faulting instruction
11. TLB miss Set P bit in each such PTE to O

2. Page Table walk

3. Page fault (Present bit P

not set in Page Table) Find all PTEs referring to frame VP maps to

4. Exception to Kernel to
run page-fault handler

5. Convert VA to file offset

> if page frame was shared

6. Allocate page frame 12. Page Table walk - Remove any TLB entries that included VP’ victim frame
; success!

(evict page if needed) » the PTE they are caching is now invalid!

" 4 13. TLB updated
7. Initiate disk block read P Write changes to page back to disk

info page frame 14. Execute instruction
@ Transferring pages in bulkggllows to reduce transfer time

Page Replacement

@ Local vs Global replacement

o Local: victim chosen from frames of process
experiencing page fault

» fixed allocation per process

Global: victim chosen from frames allocated to
any process

» variable allocation per process

@ Many replacement policies
o Random, FIFO, LRU, Clock, Working set, etfc.

@ Goal: minimizing number of page faults
97

Comparing Page
Replacement Algorithms

@ Record a trace of the pages accessed by a
process

o E.g. 3,1,4,2,5,2,1,2,3,4 (or c,a,d,be,b,a,b,c,b)

@ Simulate behavior of page replacement
algorithm on trace

@ Record number of page faults generated

How do we pick a victim?

@ We want:
D low fault-rate for pages

D page faults as inexpensive as possible

® We need:

D a way fo compare the relative performance
of different page replacement algorithms

O some absolute notion of what a “good” page
replacement algorithm should accomplish

Optimal Page Replacement

@ Replace page needed furthest in future

Time 0

4 6 8
b b b

C
Requests d

0

Page Frames

Time page
needed next

+ Frames

FIFO Replacement - Page Faults

@ Replace pages in the order they come into memory

Assume: Time o)

3
a@-3 Requests d
be@ -2
c@ -l 0
d@o

4156 9 (10
b b

Number of page faults

Page Frames

1
2
3

Number of frames

102

For example... Belady's Anomaly

Page Frames

X[X X X[X

@ 3 frames - 9 page faults! @ 4 frames - 10 page faults!

103 104

+ Frames

_ Page Faults? Locality of Reference

@ If a process access a memory location, then
it is likely that

o the same memory location is going to be accessed
again in the near future (temporal locality)

O nearby memory locations are going to be
accessed in the future (spatial locality)

Number of page faults

@ 90% of the execution of a program is sequential

Number of frames

o Yes, but only for stack page replacement policies @ Most iterative constructs consist of a relatively small

number of instructions
o set of pages in memory with n frames is a subset of

set of pages in memory with n+l frames

LRU: Least Recently Used Implementing LRU

@ Replace page not referenced for the longest time @ Maintain a “stack” of recently used pages

Time |[O
Reques’rs Requests
(0]
0 I
2

Time

Page Frames

w

.“
o
<
=
@

Page Frames

1
2
3

| [e] [¢] [2]

LRU Page Stack - u u

Faults L] e [l
: T minlsin

Time page

last used : page toreplace [] [][] [[e] [] [[[e] [¢]

108

No-Locality Workload 80%-20% Workload

@ 10,000 references, but
with some locality

® Workload references
100 unique pages over
Timg o 80% of references to

@ 10,000 references % 20% of the pages

o 20% of references to
the remaining 80% of

Page5. 20 40 60 {0}
Cache size (blocks)

What do you notice? What do you notice?

@ Next page chosen at
random 0 4 6 8 100

Cache size (blocks)

Sequential-in-a-loop
Workload

Implementing LRU

@ Add a (64-bit)
Ya timestamp tfo
RN & L0 each page table

@ 10,000 references 2 entry
OPT —

' LRU o HW counter
® We access 50 pages in FIFO — incremented on

sequence, then repeat, % RAND — each instruction
Ina IOOP. FIFO & Page table enfry
LRU
S timestamped with
20 40 %) 80 counter when

Cache size (blocks) referenced

c Replace page with
What do you notice? lowest timestamp

Implementing LRU

o Add a (64-bit)
timestamp to
each page table
entry

@ Approximate LRU through aging
o keep a k-bit tag in each table entry

o at every “tick”: i) shift tag right one bit
ii) Copy Referenced (R) bit in tag
iii) Reset Refereced bits to O

o HW counter o If needed, evict page with lowest tag

incremented on Rbitsat Rbifsat Rbifsat Rbifsat R bifs at
each instruction Tick 0 Tick 1 Tick 2 i Tick 5

Tick 4
ofufofufs| [afufolofslo] [afsfofsfo]s] " [xlolofoftlo| [o]z]t]olelo]

Page table entry
Page 0 [10000000] [11000000] [11100000] [11110000 [01111000 |

timestamped with

counter when
referenced Page 2 [10000000] [01000000] [00100000] [00100000] [10001000]

Page 1 [00000000] [10000000] [11000000] [o1100000] [10110000]

Page 3 [00000000] [00000000] [10000000] [01000000] [00100000]

Replace page with
lowest timestamp

Page 4 [10000000] [11000000] [ou00000] [10110000] [o1011000]

Page 5 [10000000] [01000000] [10100000] [o1010000] [o00101000]
113

Clock Page Replacement

Time

Requests
0

Page Frames

1
2
3

Faults

Page table entries
for resident pages

Hand clock: [

The Clock Algorithm

Page 3
Organize pages in memory] 2 |
as a circular list .
Wh g F d Page 2
en page is referenced,
set its reference bit R to 1 o] 7 |

On page fault, look at page
the hand points:

o if R =0:

» evict the page
Page 5

» set R bit of newly
loaded page to 1
else (R = 1): clear R R bit

frame #

advance hand 5

The Second Chance Algorithm

Page 3

@ Dirty pages get “second ofi] 2 |

chance” before eviction
Page 2

o synchronously replacing 3
dirty pages is expensive! EE-

If clock’s hand points at ..this is what
P and this is P$ state... happens

dirty| R dirty R
(0] (0] replace page
(o] 1 0 [¢}

1 0 [¢} (]
1 1 1 0

[Start asynchronous transfer

f dirt to disk
of dirty page to disk] dirty bilg

Second Chance

Page Replacement

| tme Jofij2|sl4fs]ef7]8]9 w0
Requests| | c av|d|bv]elbla]bc|d

w
o
13
o
w
o
D
S
a

Page fable entries |Ot]al it fal oofa] 00 a||11]a] [11]a] [oo]a]
for resident pages |01]b| [11]b | |oofb] |o1]b] oL [b] otfbllo1]d]
o1]ef[o1]e]fol]e] 01]e] [00]e]

[o1]d] [oofd] oofd] [oofd]

Hand clock: [H ﬂ m

Async copy: [17

