
Speeding Up

Address Translation

Guess What? Caching!

Translation-Lookaside Buffer (TLB)

stores for future use a successful translation between a
Virtual Page Number (VPN) and a Physical Frame Number
(PFN)

on a TLB hit, translation is achieved without accessing PT

on a TLB miss

Page Table is accessed

if VA is invalid, exception (segmentation fault)

if VA is valid, but page is not present, load page (we’ll talk
about it soon)

if VA is valid and page is present, update TLB and retry op

Why Does it Work?

Spatial locality

program is likely to access memory locations close to
each other in VA space

only first access to a page causes a TLB miss and Page
Table access

Temporal locality

program is likely to quickly access again the same
memory locations

if new access happens while translation still in TLB, mo
need to access Page Table

So Sorry I Missed You

TLB Misses can be handled in Hardware

HW updates TLB and retries instruction

HW uses PTBR to find Page Table (PT)

HW performs full address translation

TLB misses can be handled in Software

TLB miss causes a trap

HW raises an exception, moves to kernel mode, and
jumps to trap handler

Handler goes through PT and updates TLB

better not trigger a TLB miss while running the handler!

HW returns from serving the miss with PC pointing to
the instruction that caused the trap, so it is re-executed

Speeding things up:

The TLB

CPU

Physical

addresses

PTBR

o

Page Table Base Register

p

f

p o

TLB miss

TLB hit

VPN PFN

TLB

(1+ε)α+(2+ε)(1−α)
= 2+ε−α (: hit ratio)α

81

Access

EAT:
f
f
e
c
t
i
v
e

c
c
e
s
s

i
m
e

Virtually

Addressed Caches

CPU Virtual

Cache

Physical

Memory

TLB Page

Table

Virtual

Address

Miss

Virtual

Address

Miss

+

Invalid Exception

HitHit
Valid & Present

PFN PFN

Physical

Address

Data

Data

Data

Virtual

Address

Offset

82

Contents of

Physical Memory

indexed by VA

Physically

Addressed Caches

CPU Virtual

Cache

Physical

Memory

TLB Page

Table

Virtual

Address

Miss

Virtual

Address

Miss

+

Invalid Exception

HitHit
Valid & Present

PFN PFN

Physical

Address

Data

Data

Data

VA

Physical

Cache

PA

Hit

Data

Miss
Offset

83

TLB Consistency - I

On context switch

VAs of old process should no longer be valid

Change PTBR — but what about the TLB?

84

TLB Consistency - I

On context switch

VAs of old process should no longer be valid

Change PTBR — but what about the TLB?

Option 1: Flush the TLB

1 0x0053 0x0012 R/W

PID VPN PFN Access

TLB Entry

Ignore entries with wrong PIDs

Option 2: Add pid tag to each TLB entry

85

TLB Consistency - II

What if OS changes permissions on a page?

What if permissions are reduced?

OS must purge affected TLB entries (e.g., on
copy-on-write)

What if permissions are expanded?

either cause hardware to load new entries

or cause an exception, so handler can update TLB
entry as necessary

86

What if we miss

in the TLB?

Suppose a 64-bit VAS, with 4KB page and a
512MB physical memory

Page table has 252 entries

At 4 bytes/PTE, Page Table is 16 Petabytes!

per process!

For Page Table at each level to fit in a single
page, each level should span at most 10 bits

6 levels of paging!!

But frames are few… only 229/212 = 128K
87

A different approach

What if mapping size were proportional to
the number of frames, instead of pages?

If PTE = 16 bytes, Page table size = 2MB

And since all processes share the same physical
frames, just one global page table!

Inverted page tables

88

Page Registers

(a.k.a. Inverted Page Tables)

For each frame, a register containing

Residence bit

 is the frame occupied?

Page number of the occupying page

Id of the process currently mapping the frame

VAS of different processes may map the
same page number to different frames!

Protection bits

Searched by page number

89

Basic Inverted
Page Table Architecture

CPU pid p offset

pid p

search

PFN offset

Inverted Page Table

Physical
Memory

90

0

PFN

1

PFN - 1

Where have all the
pages gone?

Searching 128KB of registers on every
memory reference is not fun

If the number of frames is small, the page
registers can be placed in an associative
memory — but…

Large associative memories are expensive

hard to access in a single cycle

consume lots of power

91

Hashed Inverted

Page Tables

Hash Anchor Table maps <pid, VPN> to an entry
of the Inverted Page Table

Collisions handled by chaining

0 0x1 0x123

pid VPN Offset

0x184fc

0xaf013
0x0

Hash Anchor
Table

hash

1 0xa63 0x184fa

0 0x1 ----
3 0x31ab 0x0a921

pid VPN next

0x0

0x184fa
0x184fb

0x184fa 0x123

PFN

92

Inverted
Page Table

Physical Memory Address
(typically, #buckets
equals #frames)

1

2

3
1

4

5

