Speeding Up

Address Translation

Why Does it Work?

@ Spatial locality

o program is likely to access memory locations close to
each other in VA space

14

only first access to a page causes a TLB miss and Page
Table access

@ Temporal locality

u}

program is likely to quickly access again the same
memory locations

if new access happens while translation still in TLB, mo
need to access Page Table

Guess What? Caching!

@ Translation-Lookaside Buffer (TLB)

o stores for future use a successful translation between a
Virtual Page Number (VPN) and a Physical Frame Number
(PFN)

on a TLB hit, translation is achieved without accessing PT
on a TLB miss

» Page Table is accessed

» if VA is invalid, exception (segmentation fault)

» if VA is valid, but page is not present, load page (we'll talk
about it soon)

if VA is valid and page is present, update TLB and retry op

So Sorry I Missed You

® TLB Misses can be handled in
o HW updates TLB and retries instruction
o HW uses PTBR to find Page Table (PT)

o HW performs full address translation

® TLB misses can be handled in Software
o TLB miss causes a trap

o HW raises an exception, moves to kernel mode, and
jumps to trap handler

Handler goes through PT and updates TLB
» better not trigger a TLB miss while running the handler!

HW returns from serving the miss with PC pointing to
the instruction that caused the trap, so it is re-executed

CcPU

Speeding things up:
The TLB

P 0
CcPU
VPN PFN Access
TLB hit Physical
addresses

TLB
TLB miss
P
EAT: (14+€)at(2+¢)(1-a)

] 81
Page Table Base Register

PTBR 118 =2+4e—a (c: hit ratio)

Physically
Addressed Caches

Virtual Virtual

Address Virtual 1 Address i Page) i
»> Invalid--» Exception
J Cache Table

3

Hit
i Valid & Present
* H

Offset Physical
>

Physical § Cache

Address

Hit

L/
Data

Virtually
Addressed Caches

Contents of
Physical Memory
indexed by VA

Virtual Virtual

Address Virtual Address Page

Cache Table

Hit

\
PFN

Offset

Invalid -% Exception

Valid & Present

_} Physical

Physical
Address

~{ Memory

v
Data

Physical
Memory

\
Data

TLB Consistency - I

@ On context switch

o VAs of old process should no longer be valid

o Change PTBR — but what about the TLB?

TLB Consistency - I

@ On context switch

o VAs of old process should no longer be valid

o Change PTBR — but what about the TLB?
» Option 1: Flush the TLB
» Option 2: Add pid tag to each TLB entry

PID VPN PFN Access

TiBEntry | 1 | Ox0053 | 0x0012 | R/W |

Ignore entries with wrong PIDs
85

What if we miss
in the TLB?

@ Suppose a 64-bit VAS, with 4KB page and a
512MB physical memory

o Page table has 252 entries
o At 4 bytes/PTE, Page Table is 16 Petabytes!

» per process!

0 For Page Table at each level fo fit in a single B
page, each level should span at most 10 bits }

> 6 levels of paging!!

o But frames are few... only 229/212 = 128K
87

TLB Consistency - II

® What if OS changes permissions on a page?
0 What if permissions are reduced?

» OS must purge affected TLB entries (e.g., on
copy-on-write)

0 What if permissions are expanded?
» either cause hardware to load new entries

> or cause an exception, so handler can update TLB
entry as necessary

86

A different approach

® What if mapping size were proportional tfo
the number of frames, instead of pages?

o If PTE = 16 bytes, Page table size = 2MB

D And since all processes share the same physical
frames, just one global page fable!

Inverted page tables

Page Registers Basic Inverted
(a.k.a. Inverted Page Tables) Page Table Architecture

@ For each frame, a register containing
0 Residence bit

- is the frame occupied? r
o Page number of the occupying page
o Id of the process currently mapping the frame —> e —— T Physical
o VAS of different processes may map the Memory
same page number to different frames!

o Protection bits ol
@ Searched by page number

PFN - 1

Inverted Page Table 90

Where have all the Hashed Inverted
pages gone? Page Tables

y ; @ Hash Anchor Table maps <pid, VPN> to an entry
@ Searching 128KB of registers on every of the Inverted Page Table

memory reference is not fun i ik
@ Collisions handled by chaining

@ If the number of frames is small, the page
registers can be placed in an associative

memory — but... : . 0x184fa >
: ®

VPN Offset

0x184fc

@ Large associative memories are expensive o oul

0x184fb Ox3lab

o hard to access in a single cycle Oxafo13

0x0

Inverted
Page Table

—_—
o consume lots of power Hash Anchor
Table
(typically, #buckets

equals #frames) 0x184fa ox123 Physical Memory Address

