Paged Segmentation

Page table size for a Use Base and Bound registers!
machine with 64-bit For each segment

addresses and a page Base register stores physical
size of 4KB? address of corresponding PT

R e d UC i n g 1- h e S 1-0 ra g e 252 entries! Bound Registers stores length

(no. of page table entries) of

Overhead OF page Tables Make pages bigger! corresponding PT

internal fragmentation Can significantly reduce

Good news! storage overhead
address spaces often if using only a few contiguous
organized in segments! pages in each segment
Buft...

Use a page table per
segment! does not work well if segment is

large but sparsely used
but how can OS find those

page tables? rein’rro.duces variable length
el allocation

Paged Segmentation A More Flexible Way to
Example Leverage Sparsity

ssume

32 bits 32 bit address space PTBR
4Kb pages
bytes P
00000000000000000000000000000000 T
age Tabvle
Use a better data ° e
2K
What is the size of the VA space, assuming it is byte structure to express s [7 o
addressable? 232 bytes (or 4 GBytes) the Page Table -
a tree! 2047 13
How large is a page? 212 bytes (or 4 KBytes)
6K
What is the maximum value that can be stored in a Bound 2% Gap unallocated
register? 216 (or 65536) Pres
8192
1023
If each PTE takes 4 bytes, how many pages are required to unallocated ||| 1023 Pages
store the largest page table that a segment can support? ”":’ES ! page
9215 5
for stack
Page tables can have 2! entries, each 22 bytes; since a page holds 2!2 bytes, unallocated
the number of pages necessary to store the page table is 218/212 = 64 pages 63 pages

A More Flexible Way to A More Flexible Way to
Leverage Sparsity Leverage Sparsity

ssume ssume
32 bit address space PTBR 32 bit address space PTBR
4Kb pages 4Kb pages
4 bytes PTE 4 bytes PTE
Page Table Page Table
Frame # ___V Other bits Frame # _V Other bifs
Use a better data i — 5 Use a better data i —r 0
“ee a 0 R a 0
structure to express 1023 218 ol structure to express 1023 218 el
the Page Table loas] 32 the Page Table loasl 32 0
PR PR a 0
a tree! e I a tree! oar |13 <
220 Gap 220 Gap
PTEs PTEs
8192 8192
1023 1023
unallocated unallocated
pages pages
9215 65 9215 65
unallocated unallocated
o4 pages o5 pages

A More Flexible Way to

Leverage Sparsity Multi-level Paging

ssume
32 bit address space PTBR
4Kb pages .
PDBR e 4 bytes PTE Structure virtual
Frame # v rame Other bits
o o1 o 71 £y PagFe Tgbvle address space as a tree
: rame 5V oter bis
1 1102 —)
Use a better data . - 023 [o1 my 0 7 3!]
g0 Virtual address of a SPARC
structure to express - - . |z [z el
4 — 1024 1 0
the Page Table s - — PR] B 5
.« a
. - 2047 m m2 o "o [T 0 _
a tree! , - o4 13 ¢ 8 6 6 12
8
J—= PDBR _
220 Gap —L R
Invalid 8192 023 F PTEs o 63
entries rl
. . 1 8192
invalid PTEs %’?‘8 1023 F . 16K
1023 9215 65 e unallocated [[|If ™|
Page pages .0 &
Directory 9215 65 e’ 4K
254 0
unallocated 255
66 pages

Frame -
2124

Aside

Checkin: 2 condition variables

self.allCheckedIn = Condition(self.lock)

self.allLeaving = Condition(self.lock)
def checkin():

nArrived++
if nArrived < nThreads: // not everyone has checked in
while nArrived < nThreads:
allCheckedIn.wait() // wait for everyone to check in
else:
nLeaving = 0 // this thread is the last to arrive

allCheckedIn.broadcast() // tell everyone weTe all here!

nLeaving++
if nLeaving < nThreads: // not everyone has left yet
while nLeaving < nThreads:
allLeaving.wait() // wait for everyone to leave
else:
nArrived = 0 // this thread is the last to leave

allLeaving.broadcast() // tell everyone weTe outta here!

Checkin with one
condition variable

self.allCheckedIn = Condition(self.lock)

Whot’s

def checkin(): wron
with self.lock: with Hhis?
nArrived++

if nArrived < nThreads:
while nArrived < nThreads:
allCheckedIn.wait()
else:
allCheckedIn.broadcast()
nArrived = 0

69

End of Aside

Multilevel Page Table:
an Example

30 bits

Suppose page size is 512 bytes

offset consumes 9 bits

72

Multilevel Page Table:
an Example

14 bits 7 bits 9 bits

PT Index Offset
Suppose page size is 512 bytes

offset consumes 9 bits

Suppose PTE size is 4 bytes

a page can store 128 PTEs: page table index consumes 7 bits

Page directory still requires 128 pages!
we page the Page Directory

74

Multilevel Page Table:
an Example

21 bits 9 bits

Offset

Suppose page size is 512 bytes

offset consumes 9 bits

Suppose PTE size is 4 bytes
How many bits needed by the PT index?
a page can store 128 PTEs: page table index consumes 7 bits

73

Multilevel Page Table:
an Example

7 bits 7 bits 7 bits 9 bits

Pd Index 0 Pd Index 1 PT Index Offset
Suppose page size is 512 bytes

offset consumes 9 bits

Suppose PTE size is 4 bytes

a page can store 128 PTEs: page table index consumes 7 bits

Page directory still requires 128 pages!

we page the Page Directory!

75

Getting Sloooower

Multilevel /segmented paging

reduce memory overhead of performing address
translation

.. but increase the time necessary to perform
address translation

76

