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Aside

Checkin: 2 condition variables

self.allCheckedIn = Condition(self.lock)

self.allLeaving = Condition(self.lock)
def checkin():

nArrived++
if nArrived < nThreads: // not everyone has checked in
while nArrived < nThreads:
allCheckedIn.wait() // wait for everyone to check in
else:
nLeaving = 0 // this thread is the last to arrive

allCheckedIn.broadcast() // tell everyone weTe all here!

nLeaving++
if nLeaving < nThreads: // not everyone has left yet
while nLeaving < nThreads:
allLeaving.wait() // wait for everyone to leave
else:
nArrived = 0 // this thread is the last to leave

allLeaving.broadcast() // tell everyone weTe outta here!

Checkin with one
condition variable

self.allCheckedIn = Condition(self.lock)

Whot’s

def checkin(): wron
with self.lock: with Hhis?
nArrived++

if nArrived < nThreads:
while nArrived < nThreads:
allCheckedIn.wait()
else:
allCheckedIn.broadcast()
nArrived = 0
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End of Aside



Multilevel Page Table:
an Example

30 bits

Suppose page size is 512 bytes

offset consumes 9 bits
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Multilevel Page Table:
an Example

14 bits 7 bits 9 bits

PT Index Offset
Suppose page size is 512 bytes

offset consumes 9 bits

Suppose PTE size is 4 bytes

a page can store 128 PTEs: page table index consumes 7 bits

Page directory still requires 128 pages!
we page the Page Directory
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Multilevel Page Table:
an Example

21 bits 9 bits

Offset

Suppose page size is 512 bytes

offset consumes 9 bits

Suppose PTE size is 4 bytes
How many bits needed by the PT index?
a page can store 128 PTEs: page table index consumes 7 bits
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Multilevel Page Table:
an Example

7 bits 7 bits 7 bits 9 bits

Pd Index 0 Pd Index 1 PT Index Offset
Suppose page size is 512 bytes

offset consumes 9 bits

Suppose PTE size is 4 bytes

a page can store 128 PTEs: page table index consumes 7 bits

Page directory still requires 128 pages!

we page the Page Directory!
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Getting Sloooower

Multilevel /segmented paging

reduce memory overhead of performing address
translation

.. but increase the time necessary to perform
address translation

76



