Managing Free space External Fragmentation

@ Many segments, different processes, 0s
differentisizas @ Over time, memory can become full

of small holes

@ OS tracks free memory blocks (“holes”)

O Hard to fit more segments

o Initially, one big hole

D Hard fo expand existing ones

Many strategies to fit segment into free
memory (think “assigning classrooms
to courses”) D Relocate segments to coalesce holes

@ Compaction

o First Fit: first big-enough hole

o Next Fit: Like First Fit, but starting from
where you left off

o Best Fif: smallest big-enough hole

o Worst Fit: largest big-enough hole

External Fragmentation External Fragmentation

0S 0S

Over time, memory can become full @ Over time, memory can become full
of small holes of small holes

o Hard to fit more segments o Hard to fit more segments

D Hard fo expand existing ones D Hard fo expand existing ones

Compaction @ Compaction

D Relocate segments to coalesce holes D Relocate segments to coalesce holes

» Copying eats up a lot of CPU time!
- if 4 bytes in 10ns, 8 GB in 20s!

@ But what if a segment wants to grow?

45

Eliminating External
Fragmentation: Swapping

o Preempt processes and reclaim ® Move images of suspended
their memory processes fo swap space
on backing store

Suspended —>
swap in

I swap out
Suspended E E E E

queve Backing Store

Semaphores/condition queues
46

Virtual address

@ Interpret VA as comprised of two components

o page: which page?

o offset: which byte within that page?

Paging

@ Allocate VA & PA memory in fixed-sized chunks
(pages and frames, respectively)

o free frames can be tracked using a simple bitmap
» 0011111001111011110000 one bit/frame

D no more external fragmentation!

o but now internal fragmentation (you just cant win...)
o0 when memory needs are not a multiple of a page

o typical size of page/frame: 4KB to 16KB

@ Adjacent pages in VA (say, within the stack)

need not map fo contiguous frames in PA!
47

Virtual address

p (20 bits) o (12 bits)

@ Interpret VA as comprised of two components
o page: which page?
» no. of bits specifies no. of pages in VA space

o offset: which byte within that page?

Virtual address Virtual address

p (20 bits) o (12 bits) p (20 bits) o (12 bits)

R e S

@ Interpret VA as comprised of two components

@ To access a byte

o page: which page?

o extract page number

» no. of bits specifies no. of pages in VA space
o offset: which byte within that page? o map that page number info a frame
» no. of bits specifies size of page/frame number using a page table

extract offset

access byte at offset in frame

Physical
Memory

Basic Paging Page Table Entries

Referenced ~ Cache

palid disable
@ Frame number Present\ Dirty

Protection

TV T

Valid/Invalid bit PTE: |Frame

o Set if process can reference that
p [f y
T Por IR Page table [T Physica
R D C

Page Taul Present bit i memory

(stores frame nos)

L o Set if page is mapped to a frame
p

Referenced bit

o Set if page has been referenced
Dirty bit

o Set if page has been modified

Cache disable bit
o Set if page cant be cached

The Page Table

0N o U A W= O

lives in memory

at the physical address stored
in the Page Table Base Register

PTBR saved/restored on ke
context switch Protection bits (R/W/X)

Page Table Entries

Referenced ~ Cache

Frame number Presen’r\ Dirty it

Protection

Valid/Invalid bit PTE: [Frame| | | ']

o Set if process can reference that
portion of VA space

Present bit

Protection
Page table itc ewx)
Frame # V. P R D C

2 1)1

Physical

memory

o Set if page is mapped to a frame

Referenced bit

o Set if page has been referenced

0N o U A W= O

Dirty bit

o Set if page has been modified On disk

Cache disable bit

o Set if page cant be cached

o|lo|o|o|N|ju|uv]o]o|o|w]sr]|Oo]|a]|—

Protection bits (R/W/X)

P
SR
(V]

Page size: 4 bytes

Page
Table

4

3

rXdHIT O MTM{O O ©®P

OO ®PIT G 1M

Sharing

@ By now, its old hat:

o Processes share pages by
mapping virtual pages to
the same frame Page Table

Process 0O

o Fine tuning using —
protection bits (RWX)

Physical Page Table
Memory Process 1

@ We can refine COW to operate
at the granularity of pages

T

o on fork, mark all pages
read only

on write, copy only the
affected page

set W bit in both PTEs

Space Overhead

@ Two sources, in ftension:
o data structure overhead (the Page Table itself)

o fragmentation

» How large should a page be?

sequences of
contiguous pages

Overhead for paging:
(#PTEs x sizeofEntry) + (#"segments” x pageSize/2) =
= ((VA_Size/pagesize) x sizeofEntry) + (#"segments” x pageSize/2)
o What makes up sizeofEntry?
bits to identify physical page [logz (PA_Size / frame (aka page) size)]
control bits (Valid, Present, Dirty, Referenced, etc)

usually word or byte aligned (so, however many bits are needed to make it so)

57

Computing
Paging Overhead

@ 1 MB maximum VA, 1 KB page, 3 “segments” (program,
stack, heap)

@ PA space is 64KB and PTE has 7 control bits
What is the Paging Overhead?

o ((220/ 210) x sizeofEntry) + (3 x 29) bytes
o sizeofEntry = 6 bits (26 frames) + 7 control bits
» byte aligned size of PTE entry: 16 bits

Overhead: 210 x 2 + 3 x 29 =
(21 + 3 x 29) bytes

58

What's not to love?

@ Space overhead

o With a 64-bit address space, size of page table can
be huge

@ Time overhead
0 What before used to require one memory access,
now needs two

» one to access the correct PTE and retrieve the
correct frame number

» one to access the actual physical address that
contains the data of inferest

59

