Managing Free space

- Many segments, different processes, different sizes
- OS tracks free memory blocks ("holes")
 - □ Initially, one big hole
- Many strategies to fit segment into free memory (think "assigning classrooms to courses")
 - □ First Fit: first big-enough hole
 - Next Fit: Like First Fit, but starting from where you left off
 - Best Fit: smallest big-enough hole
 - D Worst Fit: largest big-enough hole

External Fragmentation

44

- Over time, memory can become full of small holes
 - □ Hard to fit more segments
 - □ Hard to expand existing ones
- Compaction
 - Relocate segments to coalesce holes

OS

External Fragmentation

- Over time, memory can become full of small holes
 - **D** Hard to fit more segments
 - Hard to expand existing ones
- Compaction
 - **D** Relocate segments to coalesce holes

OS

External Fragmentation

43

- Over time, memory can become full of small holes
 - **D** Hard to fit more segments
 - Hard to expand existing ones
- Compaction
 - Relocate segments to coalesce holes
 - ▷ Copying eats up a lot of CPU time!
 - if 4 bytes in 10ns, 8 GB in 20s!

ø But what if a segment wants to grow?

Eliminating External Fragmentation: Swapping

Move images of suspended

processes to swap space

on backing store

 Preempt processes and reclaim their memory

Virtual address

32 bits

page: which page?

D offset: which byte within that page?

Paging

- Allocate VA & PA memory in fixed-sized chunks (pages and frames, respectively)
 - \square free frames can be tracked using a simple bitmap
 - ▷ 0011111001111011110000 one bit/frame
 - □ no more external fragmentation!
 - 🛛 but now internal fragmentation (you just can't win...)
 - $\ensuremath{\square}$ when memory needs are not a multiple of a page
 - □ typical size of page/frame: 4KB to 16KB

Adjacent pages in VA (say, within the stack) need not map to contiguous frames in PA!

Virtual address

- Interpret VA as comprised of two components
 - page: which page?
 - ▶ no. of bits specifies no. of pages in VA space
 - D offset: which byte within that page?

p (20 bits) o (12 bits)

- Interpret VA as comprised of two components
 - page: which page?
 - ▶ no. of bits specifies no. of pages in VA space
 - offset: which byte within that page?
 - ▷ no. of bits specifies size of page/frame

50

Page Table Entries

53

D

- Frame number
- Valid/Invalid bit
 - 🛛 Set if process can reference that portion of VA space
- Present bit
 - □ Set if page is mapped to a frame
- Referenced bit
 - □ Set if page has been referenced
- Ø Dirty bit
 - □ Set if page has been modified
- Cache disable bit
 - □ Set if page can't be cached
- Protection bits (R/W/X)

				Val	lid	P	re	Re ser	ferenced nt\ Dirty	Cach disab /	e le Protection /	
E:	F	r	a	m	e		¥					
Dage	† v	al	ol R	e D	t C	Pro bits	ote ; (F	ect 2/V	ion v/x)		Physical	
	1	1									3	о
	1 1 1	1 1 1									1	1
	1	1									0	2
	0 0	0 0							66.0		5	3
	1 1	1 0									4	4
	1 0	1 0									9	5
	0	0									2 11	6 7
	0	0			E.	E'	Ε'	E.				

Page Table Entries

- Frame number
- Valid/Invalid bit
 - Set if process can reference that portion of VA space

Ø	Pres	ent	bit

- 🛚 Set if page is mapped to a frame
- Referenced bit
 - □ Set if page has been referenced
- Dirty bit
 - 🗅 Set if page has been modified
- Cache disable bit
 Set if page can't be cached
- Protection bits (R/W/X)

	Example		0 PA Space
VA Space	Page size: 4 bytes	I J K	1
O A B C D 1 E	Page Table 0 4	L	2
F G H 2 I	¹ 3 ² 1	E F G H	3
J K L	56	A B C D	4

														_/	/	
f	PTE:			Frame												K
	f F O	Page irame #	† v	al P	ol R	e D	t C	Pri bits	ote s (F	ect 2/V	ion v/x)					Physica memory
	1	1	1	1			Ī	Ī	Ī	Γ						2
	2	6	1	1												3
	3	0	1	1							22					1
	4	4	1	1							128					-
	5	3	1	1							100					0
	6	0	0	0												F
	/ 。	0	0	0			-				28					2
On disk	9	5	1	1												4
	10	5	1	0												0
	11	7	1	1												9
	12	0	0	0												2
	13	0	0	0	_				_	F						
	14 15	0	0	0		F	H	H	-	F						11
54	-10	-	0	0		Γ.				Γ.						

Referenced Cache disable Protection

Present\ Dirty

Sharing

- By now, it's old hat:
 - Processes share pages by mapping virtual pages to the same frame
 - Fine tuning using protection bits (RWX)
- We can refine COW to operate at the granularity of pages
 - on fork, mark all <u>pages</u> read only
 - on write, copy only the affected page
 - ▶ set W bit in both PTEs 55

Space Overhead

- Two sources, in tension:
 - □ data structure overhead (the Page Table itself)
 - □ fragmentation
 - ▶ How large should a page be?

Overhead for paging:

sequences of contiguous pages

- (#PTEs x sizeofEntry) + (#``segments'' x pageSize/2) =
- = ((VA_Size/pagesize) x sizeofEntry) + (#"segments" x pageSize/2)
 - □ What makes up sizeofEntry?
 - bits to identify physical page [log₂ (PA_Size / frame (aka page) size)]
 - ▶ control bits (Valid, Present, Dirty, Referenced, etc)
 - » usually word or byte aligned (so, however many bits are needed to make it so)

Computing Paging Overhead

- 1 MB maximum VA, 1 KB page, 3 "segments" (program, stack, heap)
- PA space is 64KB and PTE has 7 control bits

What is the Paging Overhead?

- \Box ((2²⁰ / 2¹⁰) x sizeofEntry) + (3 x 2⁹) bytes
- □ sizeofEntry = 6 bits (2⁶ frames) + 7 control bits
 - ▷ byte aligned size of PTE entry: 16 bits

58

Overhead: 2¹⁰ x 2 + 3 x 2⁹ = (2¹¹ + 3 x 2⁹) bytes

What's not to love?

- Space overhead
 - With a 64-bit address space, size of page table can be huge
- Time overhead
 - What before used to require one memory access, now needs <u>two</u>
 - one to access the correct PTE and retrieve the correct frame number
 - one to access the actual physical address that contains the data of interest

59