
Managing Free space
Many segments, different processes,
different sizes

OS tracks free memory blocks (“holes”)

Initially, one big hole

Many strategies to fit segment into free
memory (think “assigning classrooms
to courses”)

First Fit: first big-enough hole

Next Fit: Like First Fit, but starting from
where you left off

Best Fit: smallest big-enough hole

Worst Fit: largest big-enough hole

OS

42

External Fragmentation

Over time, memory can become full
of small holes

Hard to fit more segments

Hard to expand existing ones

Compaction

Relocate segments to coalesce holes

OS

43

External Fragmentation

Over time, memory can become full
of small holes

Hard to fit more segments

Hard to expand existing ones

Compaction

Relocate segments to coalesce holes

OS

44

External Fragmentation

Over time, memory can become full
of small holes

Hard to fit more segments

Hard to expand existing ones

Compaction

Relocate segments to coalesce holes

OS

45

Copying eats up a lot of CPU time!

if 4 bytes in 10ns, 8 GB in 20s!

But what if a segment wants to grow?

Eliminating External
Fragmentation: Swapping
Preempt processes and reclaim
their memory

Move images of suspended
processes to swap space
on backing store

Ready Running

Waiting
Suspended

Semaphores/condition queues

Ready
queue

Suspended
queue

OS

p1

p2

swap out

swap in

46

Backing Store

Paging
Allocate VA & PA memory in fixed-sized chunks
(pages and frames, respectively)

free frames can be tracked using a simple bitmap

0011111001111011110000 one bit/frame

no more external fragmentation!

but now internal fragmentation (you just can’t win…)

when memory needs are not a multiple of a page

typical size of page/frame: 4KB to 16KB

Adjacent pages in VA (say, within the stack)
need not map to contiguous frames in PA!

47

Virtual address

Interpret VA as comprised of two components

page: which page?

offset: which byte within that page?

}32 bits

48

Virtual address

}o (12 bits)}p (20 bits)

49

Interpret VA as comprised of two components

page: which page?

no. of bits specifies no. of pages in VA space

offset: which byte within that page?

Virtual address

}}
50

Interpret VA as comprised of two components

page: which page?

no. of bits specifies no. of pages in VA space

offset: which byte within that page?

no. of bits specifies size of page/frame

p (20 bits) o (12 bits)

Virtual address

}}

51

To access a byte

extract page number

map that page number into a frame
number using a page table

extract offset

access byte at offset in frame

2
1
6
0
4

8

Page Table

0
1
2
3
4

220 -1

.

.

.

.

.

.

.

.

.

.

.

.

p (20 bits) o (12 bits)

Basic Paging
CPU o

p

p

f

f

o

52

Physical

Memory

Page Table

(stores frame nos)

f

PTBR

The Page Table

lives in memory

at the physical address stored
in the Page Table Base Register

PTBR saved/restored on
context switch

Page Table Entries
Frame number

Valid/Invalid bit

Set if process can reference that
portion of VA space

Present bit

Set if page is mapped to a frame

Referenced bit

Set if page has been referenced

Dirty bit

Set if page has been modified

Cache disable bit

Set if page can’t be cached

Protection bits (R/W/X)
53

3
1
0
5
4
9
2
11

Physical

memory

7

6

5

4

3

2

1

0

Frame
no.

Cache

disableValid Referenced

Dirty
Protection

Present

1 1
1 1
1 1
1 1
1 1
1 1
0 0
0 0
0 0
1 1
1 0
1 1
0 0
0 0
0 0
0 0

Page table

15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

}

Protection

bits (R/W/X)

Frame # V P R D C

PTE:

Page Table Entries
Frame number

Valid/Invalid bit

Set if process can reference that
portion of VA space

Present bit

Set if page is mapped to a frame

Referenced bit

Set if page has been referenced

Dirty bit

Set if page has been modified

Cache disable bit

Set if page can’t be cached

Protection bits (R/W/X)

1 1
1 1
1 1
1 1
1 1
1 1
0 0
0 0
0 0
1 1
1 0
1 1
0 0
0 0
0 0
0 0

Page table

15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

}

Protection

bits (R/W/X)

54

Frame
no.

Cache

disable

On disk

Referenced

Dirty
Protection

Present

Frame # V P R D C

3
1
0
5
4
9
2
11

Physical

memory

7

6

5

4

3

2

1

0

PTE:

2
1
6
0
4
3
0
0
0
5
5
7
0
0
0
0

Sharing
By now, it’s old hat:

Processes share pages by
mapping virtual pages to
the same frame

Fine tuning using
protection bits (RWX)

We can refine COW to operate
at the granularity of pages

on fork, mark all pages
read only

on write, copy only the
affected page

set W bit in both PTEs

Page Table

Process 1Page Table

Process 0

Physical

Memory

55

Shared Shared

Example

A
B
C
D
E
F
G
H
I
J
K
L

0

1

2

VA

Space

0

1

2

3

4

PA

Space

0

1

2

Page

Table

A
B
C
D

E
F
G
H

I
J
K
L

1

4

3

Page size: 4 bytes

56

Space Overhead

Two sources, in tension:

data structure overhead (the Page Table itself)

fragmentation

How large should a page be?

What makes up sizeofEntry?

bits to identify physical page [log2 (PA_Size / frame (aka page) size)]

control bits (Valid, Present, Dirty, Referenced, etc)

usually word or byte aligned (so, however many bits are needed to make it so)

57

Overhead for paging:

(#PTEs x sizeofEntry) + (#“segments” x pageSize/2)

((VA_Size/pagesize) x sizeofEntry) + (#“segments” x pageSize/2)

=
=

sequences of
contiguous pages

Computing

Paging Overhead

1 MB maximum VA, 1 KB page, 3 “segments” (program,
stack, heap)

PA space is 64KB and PTE has 7 control bits

58

Overhead: 210 x 2 + 3 x 29 =

(211 + 3 x 29) bytes

((220 / 210) x sizeofEntry) + (3 x 29) bytes

sizeofEntry = 6 bits (26 frames) + 7 control bits

byte aligned size of PTE entry: 16 bits

What is the Paging Overhead?

What’s not to love?
Space overhead

With a 64-bit address space, size of page table can
be huge

Time overhead

What before used to require one memory access,
now needs two

one to access the correct PTE and retrieve the
correct frame number

one to access the actual physical address that
contains the data of interest

59

