Memory Management

Abstraction
IS our Business

® What I have
o A certain amount of physical memory

o Multiple programs I would like to run

» together, they may need more than the available physical memory

@ What I want: an Address Space

o Each program has as much memory as the machine’s
architecture will allow to name

o All for itself

Abstraction
IS our Business

@ What I have
o A single (or a finite number) of CPUs
o Many programs I would like o run
® What I want: a Thread

o Each program has full control of one or more
CPUs

Address Space

@ Set of all names used tfo identify and
manipulate unique instances of a given resource

o memory locations (determined by the size of the
machines word)

» for 32-bit-register machine, the address space
goes from 0x00000000 to OxFFFFFFFF

o phone numbers (XXX) (YYY-YYYY)

o colors: R (8 bits) + G (8 bits) + B (8 bits)

Virtual Address Space: Physical Address Space:
An Abstraction for Memory How memory may actually look

)
@ Virtual addresses start at O iogrmiCea @ Processes loaded in memory at some

memory location

@ Heap and stack can be placed far
away from each other, so they can
nicely grow

@ Addresses are all contiguous ; o MR RESS & NS i %
| memory at the same time, and yet... W

. code,
@ ...physical memory may be too small Process 1 .
to hold even a single virtual address

space in its entirety

Z

code,
Process 2 data,
etc

o virtual address O is not loaded at
physical address O

@ Size is independent of physical
memory on the machine

code,
Process 3 data,
etc

free

D 64-bit registers, anyone?

IT. Memory Isolation Isolation

S’rep 2: Address Translation @ At all times, functions used by different processes

e 0 TY Y W . III
o Implement a function mapping map to disjoint ranges — aka "Stay in your room!

(pid, virtual address) infto physical address

Virtual Physical

Advantages:

@ isolation

@ relocation 503407
@ data sharing

@ multiplexing

Relocation

@ The range of the function used by a process
can change over time

Data Sharing

® Map different virtual addresses of distinct
processes to the same physical address —
“Share the kitchen!”

5e3a07

Relocation

@ The range of the function used by a process
can change over time —“Move fo a new room!”

Multiplexing

@ Create illusion of almost infinite memory by
changing domain (set of virtual addresses) that
maps to a given range of physical addresses —
ever lived in a studio?

Multiplexing

@ The domain (set of virtual addresses) that map
to a given range of physical addresses can
change over time

Multiplexing

@ The domain (set of virtual addresses) that map
to a given range of physical addresses can
change over time

Multiplexing

@ The domain (set of virtual addresses) that map
to a given range of physical addresses can
change over time

Multiplexing

@ The domain (set of virtual addresses) that map
to a given range of physical addresses can
change over time

More Multiplexing

@ At different times, different processes can map
part of their virtual address space into the
same physical memory — change tenants!

Contiguity

@ Contiguous virtual addresses need not map to
contiguous physical addresses

More Multiplexing

@ At different times, different processes can map
part of their virtual address space into the
same physical memory — change tenanfts!

Contiguity

@ Contiguous virtual addresses need not map tfo
contiguous physical addresses

The Identity Mapping

® Map each virtual address onto the
identical physical address

o Virtual and physical address spaces
have the same size

o0 Run a single program at a time
» OS can be a simple library
» very early computers

@ Friendly amendment: leave some of
the physical address space for the OS

D Use loader to relocate process

» early PCs
21

Base & Bound

@ Goal: allow multiple processes to coexist in
memory while guaranteeing isolation

® Needed hardware
o two registers: Base and Bound (a.k.a. Limit)

o Stored in the PCB

@ Mapping
D pa = va + Base
» as long as O < va < Bound

o On context switch, change B&B (privileged instruction)
23

More sophisticated
address translation

@ How to perform the mapping efficiently?
o0 So that it can be represented concisely?
o So that it can be computed quickly?

n So that it makes efficient use of the limited
physical memory?

So that multiple processes coexist in physical
memory while guaranteeing isolation?

So that it decouples the size of the virtual and
physical addresses?

@ Ask hardware for help!

22

Base & Bound

@ P;: Base = 1000; Bound = 300

@ P,: Base = 500; Bound = 400

Memory

Exception

no
R i 1300 —

<) A
Virtual = VYes ’ Physical
address address

Bound Base

Register 2Register

Base & Bound

® P;: Base = 1000; Bound = 300
@ P,: Base = 500; Bound = 400

Memory
Exception

no
150 48

1000

1300

<
Virtual < Yes
address

300

Bound
Register

Physical

address

1000

Base

2sRegister

Base & Bound

@ P;: Base = 1000; Bound = 300
@ P,: Base = 500; Bound = 400

Memory
Exception

1000

—

1150 1300 —

address

P

Context Switch 300
Base & Bound Bound
saved in Py PCB Register

PN
g
Virtual T/ yes

W)
Physical
address

1000

Base

27Register

Base & Bound

® P;: Base = 1000; Bound = 300
@ P,: Base = 500; Bound = 400

Memory
Exception

rﬂ\

1000

150 4 4 EL)

<
Virtual < Yes
address

300

Bound
Register

Physical

address

1000

Base

26Register

Base & Bound

@ P;: Base = 1000; Bound = 300
@ P,: Base = 500; Bound = 400

Memory
Exception

1000

address

P

400

Bound
Register

Context Switch

PN
<
Virtual T/ yes

: 1300 —
Physical
address

+
10]0)

Base

28Register

On Base & Bound

@ Contiguous Allocation

o contiguous virtual addresses are mapped to
contiguous physical addresses

@ But mapping entire address space to physical
memory

o is wasteful
> lots of free space between heap and stack...
» makes sharing hard

o does not work if the address space is larger
than physical memory

» think 64-bit registers...
29

Segmentation:
Generalizing Base & Bound

@ Base & Bound registers to OKB 7
each segment

o each segment is
independently mapped to a /A
set of contiguous addresses Stack
in physical memory VILLLLLLLLLL

Program Code

Heap &
7 7/
Segment Base Bound W

Code 32K 2K 7 free
Heap 34K 3K /

» no need fo map unused
virtual addresses

Stack 28K 3K

(not to scale)

E Pluribus Unum

Program Code

@ Address spaces have structure!

@ An address space comprises
multiple segments

o contiguous sets of virtual
addresses, logically connected

» heap, code, stack, (and also
globals, libraries...)

o0 each segment can be of a

different size

Segmentation

@ Goal: Supporting large address spaces (while

allowing multiple processes to coexist in memory)

@ Needed hardware
o two registers (Base and Bound) per segment
» Stored in the PCB

DO a segment table, stored in memory, at an address
pointed to by a Segment Table Register (STBR)

» STBR stored in the PCB

Segmentation: Mapping

@ How do we map a virtual address to the
appropriate segment?
o0 Read VA as having two components
» s most significant bits identify the segment
— at most 2° segments
> o remaining bits identify offset within segment
— each segment’s size can be at most 2° bytes

k = s+o bits

Segmentation: Mapping

® How do we map a virtual address to the
appropriate segment?
o0 Read VA as having two components
» s most significant bits identify the segment
— at most 2° segments
> o remaining bits identify offset within segment
— each segments size can be at most 2° bytes

k = s+o bits

Segmentation: Mapping

@ How do we map a virtual address to the
appropriate segment?
O Read VA as having two components
> s most significant bits identify the segment
— at most 2° segments
» o remaining bits identify offset within segment
— each segment’s size can be at most 2° bytes

k = s+o bits

Segment Table

@ Use s bits fo index to the appropriate row of the

segment table
Base Access
Code 32K Read/Execute

Read/Write |

Heap 34K
Stack L 28K

3K Read/Write ‘

@ Segments can be shared by different processes

use protection bits to determine if segment is shared
Read only (maintaining isolation) or Read/Write
e.g., processes can share code segment while keeping data

u}

private
36

Implementing Segmentation

0

Segment tfable

generalizes Base & Bound

Memory

exception

Logical no

4K
addresses l
> ¢ :C\

Segment Table - < Physical
Base Register addresses
Base Bound Access ~BOUN

Revisiting fork()

@ Copying an entire address space can be
costly...

o especially if you proceed to obliterate it right
away with exec()!

Segments and Dynamically
Allocated Memory

@ Memory on heap and stack dynamically allocated

o memory redllocated to new process must be zeroed to
avoid leaking info, but zeroing memory is expensive

® Zero-on-reference

o Start with few KB

o When program uses memory outside zero-ed area:
D Segmentation fault into kernel, which
> Allocates (and zeroes) some memory
> Modifies segment table

» Resumes process,

Revisiting fork():
Segments to the Rescue

@ Instead of copying entire address space, copy
just segment table (the VA->PA mapping)

Base Bound Access Base Bound Access

Code 32K 2K RX Code 32K 2K RX

Heap 34K 3K RW Heap 34K 3K RW

stack | 28 R stock | 2o |G

Parent Child

RW

@ but change all writeable segments fo read only

Revisiting fork():
Segments to the Rescue

@ Instead of copying entire address space, copy
just segment table (the VA->PA mapping)

Base Bound Access Base Bound Access

Parent Child
@ but change all writeable segments to read only

@ Segments in VA spaces of parent and child
point to same locations in physical memory

41

Copy on Write (COW)

® When trying to modify an address in a read-
only segment:

o exception!

» exception handler copies just the affected
segment, and changes both the old and new
segment to writeable

@ If exec() is immediately called, only stack
segment is copied!

