
Deadlocks:

Prevention, Avoidance,
Detection, Recovery

1

Dining Philosophers

N philosophers; N plates; N chopsticks

class Philosopher:

chopsticks[N] = [Semaphore(1),…]

def __init__(mynum)

 self.id = mynum

def eat():

 right = self.id

 left = (self.id+1) % N

 while True:

 P(chopsticks[left])

 P(chopsticks[right])

 # om nom nom nom

 V(chopsticks[right])

 V(chopsticks[left])

2

If all philosophers grab right chopstick

deadlock!

Need exclusive access to two chopsticks

0

1

23

4

0 1

2

3

4

Problematic

Emergent Properties
Starvation: Process waits forever

Deadlock: A set of processes exists, where each is
blocked and can become unblocked only by actions
of another process in the set.

semaphore:

file_mutex = 1  
printer_mutex = 1

{

 P(file_mutex)

 P(printer_mutex)

 /* use resources */

 V(printer_mutex)

 V(file_mutex)

}

{

 P(printer_mutex)

 P(file_mutex)

 /* use resources */

 V(file_mutex)

 V(printer_mutex)

 }

T1 T2

Musings on

Deadlock & Starvation
Deadlock vs Starvation

Starvation: some thread’s access to a resource is
indefinitely postponed

Deadlock: circular waiting for resources

Deadlock implies Starvation, but not vice versa

“Subject to deadlock” does not imply “Will deadlock”

Testing is not the solution

System must be deadlock-free by design

4

System Model
Set of resources requiring “exclusive” access

might be “k-exclusive access” if resource has
capacity for k

Examples: CPU, printers, memory, locks, etc.

Acquiring a resource can cause blocking:

if resource is free, then access is granted; process
proceeds

if resource is in use, then process blocks

process uses resource

process releases resource

5

A Graph Theoretic Model
of Deadlock

Computer system modeled as a RAG, a
directed graph G(V, E)

V = {P1,…,Pn} ⋃ {R1,…,Rn}

E = {edges from a resource to a process} ⋃
{edges from a process to a resource}

Pi Rj

Pi

Rj

Pkallocation
edgerequest

edge

6

Resource Allocation Graph

Deadlock possible only if all four hold

Bounded resources (Acquire can block
invoker)

A finite number of threads can use a
resource; resources are finite

No preemption

the resource is mine, MINE! (until I
release it)

Hold & Wait

holds one resource while waiting for
another

Circular waiting

Ti waits for Ti+1 and holds a resource
requested by Ti-1

sufficient only if one instance of each
resource

Not sufficient in general

P1

P0

P2P3

P4

waiting for

owned

by

Necessary Conditions
for Deadlock

cycle

Resource type
with 5 instances

7

RAG Reduction

P1 P2 P3

R1 R3

R2 R4

Deadlock?

Step 1: Satisfy P3’s requests
Step 2: Satisfy P2’s requests
Step 3: Satisfy P1’s requests

Schedule [P3 P2 P1] completely

eliminates edges!

NO! (no cycles)

8

RAG Reduction

P1 P2 P3 P1 P2 P3

R1 R3

R2 R4 R2 R4

R3R1

Deadlock?Deadlock?

Cannot satisfy any of P1, P2, P3 requests!

RAG has a cycle
Step 1: Satisfy P3’s requests
Step 2: Satisfy P2’s requests
Step 3: Satisfy P1’s requests

Schedule [P3 P2 P1] completely

eliminates edges!

NO! (no cycles)

9

Yes!

RAG Reduction

P1 P2 P3 P1 P2 P3

P1

P2

P3

P4

R1 R3

R2 R4 R2 R4

R3R1
R1

R2

Deadlock?Deadlock?Deadlock?

10

Step 1: Satisfy P3’s requests
Step 2: Satisfy P2’s requests
Step 3: Satisfy P1’s requests

Schedule [P3 P2 P1] completely

eliminates edges!

NO! (no cycles)

Cannot satisfy any of P1, P2, P3 requests!

RAG has a cycle

Yes!
RAG has a cycle

Schedule [P2 P1 P3 P4] completely

eliminates edges!

NO!

More Musings on
Deadlock

Does the order of RAG reduction matter?

No. If Pi and Pj can both be reduced, reducing Pi
does not affect the reducibility of Pj

Does a deadlock disappear on its own?

No. Unless a process is killed or forced to release a
resource, we are stuck!

If a system is not deadlock at time T, is it
guaranteed to be deadlock-free at T+1?

No. Just by requesting a resource (never mind being
granted one) a process can create a circular wait!

11

Proactive Responses to
Deadlock: Prevention

Negate one of deadlock’s four necessary conditions

Remove “Acquire can block invoker”

Make resources sharable without locks

Wait-free synchronization

Make more resources available (duh!)

Remove “No preemption”

Allow OS to preempt resources of waiting processes

Allow OS to preempt resources of requesting process if
not all available

Proactive Responses to
Deadlock: Prevention

Negate one of deadlock’s four necessary conditions

Remove “Hold & Wait”

Request all resources before execution begins

Processes may not know what they will need

Starvation (if waiting for many popular resources)

Low utilization (if resource needed only for a bit)

Release all resources before asking anything new

Still has the last two problems…

Proactive Responses to
Deadlock: Prevention

Negate one of deadlock’s four necessary conditions

Remove “Circular waiting”

Single lock for entire system?

Impose total/partial order on resources

Makes cycles impossible, since a cycle needs edges to go from
low to high, and then back to low

Havender’s Scheme (OS/360)

Hierarchical Resource Allocation

Every resource is associated with a level.

Rule H1: All resources from a given level
must be acquired using a single request.

Rule H2: After acquiring from level Lj
must not acquire from Li where i<j.

Rule H3: May not release from Li unless
already released from Lj where j>i.

L1

L2

Ln

ac
qu

ire
re

le
as

e

Dining Philosophers
(Again)

N philosophers; N plates; N chopsticks

Pi: do forever

 acquire(min(i, i+1 mod 7)

 acquire(max(i, i+1 mod 7)

 eat

 release(min(i, i+1 mod 7)

 release(max(i, i+1 mod 7)

end

16

0

1

23

4

0 1

2

3

4

Living dangerously:
Safe, Unsafe, Deadlocked States

17

Living dangerously:
Safe, Unsafe, Deadlocked States

Safe state:

It is possible to avoid deadlock and eventually
grant all resource by careful scheduling (a
safe schedule)

Transitioning among safe states may delay a
resource request even when resources are
available

Unsafe state:

Unlucky sequence of requests can force
deadlock

Deadlocked state:

System has at least one deadlock

Safe

Deadlock

Unsafe

A system’s trajectory

through its state space

18

Why is George Bailey

in trouble?

If all his customers ask at the
same time to have back all the
money they have lent, he is going
bankrupt

But his bank is actually in a safe
state!

If only lenders delayed their requests,
all would be well!

spoiler alert: this is exactly what
happens…

It still begs the question:

How can the OS allocate resources so
that the system always transitions
among safe states?19

Proactive Responses to Deadlock: Avoidance

The Banker’s Algorithm

Processes declare worst-case needs (big assumption!), but then ask
for what they “really” need, a little at a time

Sum of maximum resource needs can exceed total available resources

Algorithm decides whether to grant a request

Build a graph assuming request granted

Check whether state is safe (i.e., whether RAG is reducible)

A state is safe if there exists some permutation of [P1, P2,…,Pn] such that, for each Pi, the
resources that Pi can still request can be satisfied by the currently available resources plus
the resources currently held by all Pj, for Pj preceding Pi in the permutation

E.W. Dijkstra & N. Habermann

20

Available = 3

Process Max
Need

Holds Needs

P0 10 5 5

P1 4 2 2

P2 9 2 7

Safe?

Available resources can satisfy P1’s needs

Once P1 finishes, 5 available resources

Now, available resources can satisfy P0’s needs

Once P0 finishes, 10 available resources

Now, available resources can satisfy P3’s needs

Yes! Schedule: [P1, P0, P3]

Proactive Responses to Deadlock: Avoidance

The Banker’s Algorithm

Processes declare worst-case needs (big assumption!), but then ask
for what they “really” need, a little at a time

Sum of maximum resource needs can exceed total available resources

Algorithm decides whether to grant a request

Build a graph assuming request granted

Check whether state is safe (i.e., whether RAG is reducible)

A state is safe if there exists some permutation of [P1, P2,…,Pn] such that, for each Pi, the
resources that Pi can still request can be satisfied by the currently available resources plus
the resources currently held by all Pj, for Pj preceding Pi in the permutation

E.W. Dijkstra & N. Habermann

21

Available = 3

Process Max
Need

Holds Needs

P0 10 5 5

P1 4 2 2

P2 9 2 7

Suppose P2 asks for 2 resources
Safe?

Processes declare worst-case needs (big assumption!), but then ask
for what they “really” need, a little at a time

Sum of maximum resource needs can exceed total available resources

Algorithm decides whether to grant a request

Build a graph assuming request granted

Check whether state is safe (i.e., whether RAG is reducible)

A state is safe if there exists some permutation of [P1, P2,…,Pn] such that, for each Pi, the
resources that Pi can still request can be satisfied by the currently available resources plus
the resources currently held by all Pj, for Pj preceding Pi in the permutation

Proactive Responses to Deadlock: Avoidance

The Banker’s Algorithm

22

Available = 3

Process Max
Need

Holds Needs

P0 10 5 5

P1 4 2 2

P2 9 2 7

Safe?

Available = 1

Process Max
Need

Holds Needs

P0 10 5 5

P1 4 2 2

P2 9 4 5

If so, request is granted; otherwise, requester must wait

E.W. Dijkstra & N. Habermann

The Banker’s books
Assume n processes, m resources

Maxij = max amount of units of resource Rj needed by Pi

MaxClaimi: Vector of size m such that MaxClaimi[j] = Maxij

Holdsij = current allocation of Rj held by Pi

HasNowi = Vector of size m such that HasNowi[j] = Holdsij

Available = Vector of size m such that Available[j] = units of Rj available

A request by Pk is safe if, assuming the request is granted,
there is a permutation of P1, P2,…, Pn such that, for all Pi in the
permutation

Needsi = MaxClaimi - HasNowi ≤ Avail + HasNowj
i�1X

j=123

An Example
5 processes, 4 resources

Is this a safe state?

0 0 1 2
1 0 0 0

1 3 5 3

0 6 3 2

0 0 1 4

P1

P2

P3

P4

P5

R1 R2 R3 R4

Holds

0 0 1 2
1 7 5 0

2 3 5 6

0 6 5 2

0 6 5 6

P1

P2

P3

P4

P5

R1 R2 R3 R4

Max

1 5 2 0

Available
R1 R2 R3 R4

24

An Example
5 processes, 4 resources

Is this a safe state?

0 0 1 2
1 7 5 0

2 3 5 6

0 6 5 2

0 6 5 6

P1

P2

P3

P4

P5

R1 R2 R3 R4

Max

1 5 2 0

Available
R1 R2 R3 R4

-
0 0 0 0
0 7 5 0

1 0 0 3

0 0 2 0

0 6 4 2

P1

P2

P3

P4

P5

R1 R2 R3 R4

Needs

While safe permutation does not include all processes:

Is there a Pi such that Needsi ≤ Avail?

if no, exit with unsafe

if yes, add Pi to the sequence and set Avail = Avail + HasNowi

Exit with safe

P1, P4, P2, P3, P5

25

0 0 1 2
1 0 0 0

1 3 5 3

0 6 3 2

0 0 1 4

P1

P2

P3

P4

P5

R1 R2 R3 R4

Holds

An Example
5 processes, 4 resources

P2 want to change its holdings to

0 0 1 2
1 0 0 0

1 3 5 3

0 6 3 2

0 0 1 4

P1

P2

P3

P4

P5

R1 R2 R3 R4

Holds

0 0 1 2
1 7 5 0

2 3 5 6

0 6 5 2

0 6 5 6

P1

P2

P3

P4

P5

R1 R2 R3 R4

Max

1 5 2 0

Available
R1 R2 R3 R4

0 0 0 0
0 7 5 0

1 0 0 3

0 0 2 0

0 6 4 2

P1

P2

P3

P4

P5

R1 R2 R3 R4

Needs

0 4 2 0

26

An Example
5 processes, 4 resources

P2 want to change its holdings to

0 0 1 2
0 4 2 0

1 3 5 3

0 6 3 2

0 0 1 4

P1

P2

P3

P4

P5

R1 R2 R3 R4

Holds

0 0 1 2
1 7 5 0

2 3 5 6

0 6 5 2

0 6 5 6

P1

P2

P3

P4

P5

R1 R2 R3 R4

Max

2 1 0 0

Available
R1 R2 R3 R4

0 0 0 0
1 3 3 0

1 0 0 3

0 0 2 0

0 6 4 2

P1

P2

P3

P4

P5

R1 R2 R3 R4

Needs

27

0 4 2 0

Safe?

Reactive Responses

to Deadlock

Deadlock Detection

Track resource allocation (who has what)

Track pending requests (who’s waiting for what)

When should it run?

For each request?

After each unsatisfiable request?

Every hour?

Once CPU utilization drops below a threshold?

Detecting Deadlock
5 processes, 3 resources. We no longer (need to) know
Max.

Given the set of pending requests, is there a safe sequence?

If no, deadlock

0 1 0

2 0 0

3 0 3
2 1 1

0 0 2

P1

P2

P3

P4

P5

R1 R2 R3

Holds

0 0 0

Available
R1 R2 R3

0 0 0

2 0 2

0 0 0
1 0 2

0 0 2

P1

P2

P3

P4

P5

R1 R2 R3

Pending

29

Detecting Deadlock
5 processes, 3 resources. We no longer (need to) know
Max.

Given the set of pending requests, is there a safe sequence?

If no, deadlock

0 1 0

2 0 0

3 0 3
2 1 1

0 0 2

P1

P2

P3

P4

P5

R1 R2 R3

Holds

0 0 0

Available
R1 R2 R3

0 0 0

2 0 2

0 0 0
1 0 2

0 0 2

P1

P2

P3

P4

P5

R1 R2 R3

Pending

30

Detecting Deadlock
5 processes, 3 resources. We no longer (need to) know
Max.

Given the set of pending requests, is there a safe sequence?

If no, deadlock

0 1 0

2 0 0

0 0 0
2 1 1

0 0 2

P1

P2

P3

P4

P5

R1 R2 R3

Holds

3 0 3

Available
R1 R2 R3

0 0 0

2 0 2

0 0 0
1 0 2

0 0 2

P1

P2

P3

P4

P5

R1 R2 R3

Pending

31

Detecting Deadlock
5 processes, 3 resources. We no longer (need to) know
Max.

Given the set of pending requests, is there a safe sequence?

If no, deadlock

0 1 0

2 0 0

0 0 0
2 1 1

0 0 2

P1

P2

P3

P4

P5

R1 R2 R3

Holds

3 0 3

Available
R1 R2 R3

0 0 0

2 0 2

0 0 0
1 0 2

0 0 2

P1

P2

P3

P4

P5

R1 R2 R3

Pending

32

Detecting Deadlock
5 processes, 3 resources. We no longer (need to) know
Max.

Given the set of pending requests, is there a safe sequence?

If no, deadlock

0 0 0

2 0 0

0 0 0
2 1 1

0 0 2

P1

P2

P3

P4

P5

R1 R2 R3

Holds

3 1 3

Available
R1 R2 R3

0 0 0

2 0 2

0 0 0
1 0 2

0 0 2

P1

P2

P3

P4

P5

R1 R2 R3

Pending

33

Detecting Deadlock
5 processes, 3 resources. We no longer (need to) know
Max.

Given the set of pending requests, is there a safe sequence?

If no, deadlock

0 0 0

2 0 0

0 0 0
2 1 1

0 0 2

P1

P2

P3

P4

P5

R1 R2 R3

Holds

3 1 3

Available
R1 R2 R3

0 0 0

2 0 2

0 0 0
1 0 2

0 0 2

P1

P2

P3

P4

P5

R1 R2 R3

Pending

34

Detecting Deadlock
5 processes, 3 resources. We no longer (need to) know
Max.

Given the set of pending requests, is there a safe sequence?

If no, deadlock

0 0 0

2 0 0

0 0 0
0 0 0

0 0 2

P1

P2

P3

P4

P5

R1 R2 R3

Holds

5 2 4

Available
R1 R2 R3

0 0 0

2 0 2

0 0 0
0 0 0

0 0 2

P1

P2

P3

P4

P5

R1 R2 R3

Pending

35

Detecting Deadlock
5 processes, 3 resources. We no longer (need to) know
Max.

Given the set of pending requests, is there a safe sequence?

If no, deadlock

0 0 0

2 0 0

0 0 0
0 0 0

0 0 2

P1

P2

P3

P4

P5

R1 R2 R3

Holds

5 2 4

Available
R1 R2 R3

0 0 0

2 0 2

0 0 0
0 0 0

0 0 2

P1

P2

P3

P4

P5

R1 R2 R3

Pending

36

Detecting Deadlock
5 processes, 3 resources. We no longer (need to) know
Max.

Given the set of pending requests, is there a safe sequence?

If no, deadlock

0 0 0

0 0 0

0 0 0
0 0 0

0 0 2

P1

P2

P3

P4

P5

R1 R2 R3

Holds

7 2 4

Available
R1 R2 R3

0 0 0

0 0 0

0 0 0
0 0 0

0 0 2

P1

P2

P3

P4

P5

R1 R2 R3

Pending

37

Detecting Deadlock
5 processes, 3 resources. We no longer (need to) know
Max.

Given the set of pending requests, is there a safe sequence?

If no, deadlock

0 0 0

0 0 0

0 0 0
0 0 0

0 0 2

P1

P2

P3

P4

P5

R1 R2 R3

Holds

7 2 4

Available
R1 R2 R3

0 0 0

0 0 0

0 0 0
0 0 0

0 0 2

P1

P2

P3

P4

P5

R1 R2 R3

Pending

38

Detecting Deadlock
5 processes, 3 resources. We no longer (need to) know
Max.

Given the set of pending requests, is there a safe sequence?

If no, deadlock

0 0 0

0 0 0

0 0 0
0 0 0

0 0 0

P1

P2

P3

P4

P5

R1 R2 R3

Holds

7 2 6

Available
R1 R2 R3

0 0 0

0 0 0

0 0 0
0 0 0

0 0 0

P1

P2

P3

P4

P5

R1 R2 R3

Pending

39

Yes, there is

a safe sequence!

Detecting Deadlock
5 processes, 3 resources. We no longer (need to) know
Max.

Given the set of pending requests, is there a safe sequence?

If no, deadlock

0 1 0

2 0 0

3 0 3
2 1 1

0 0 2

P1

P2

P3

P4

P5

R1 R2 R3

Holds

0 0 0

Available
R1 R2 R3

0 0 0

2 0 2

0 0 0
1 0 2

0 0 2

P1

P2

P3

P4

P5

R1 R2 R3

Pending

40

Yes, there is

a safe sequence!

Detecting Deadlock
5 processes, 3 resources. We no longer (need to) know
Max

Given the set of pending requests, is there a safe sequence?

If no, deadlock

0 1 0

2 0 0

3 0 3
2 1 1

0 0 2

P1

P2

P3

P4

P5

R1 R2 R3

Holds

0 0 0

Available
R1 R2 R3

0 0 0

2 0 2

0 0 1
1 0 2

0 0 2

P1

P2

P3

P4

P5

R1 R2 R3

Pending

Can we avoid deadlock by delaying granting requests?
Deadlock triggered when request formulated, not granted!

41

Deadlock Recovery
Blue screen & reboot

Kill one/all deadlocked processes

Pick a victim (how?); Terminate; Repeat as needed

Can leave system in inconsistent state

Proceed without the resource

Example: timeout on inventory check at Amazon

Use transactions

Rollback & Restart

Need to pick a victim…

Summary
Prevent

Negate one of the four necessary conditions

Avoid

Schedule processes carefully

Detect

Has a deadlock occurred?

Recover

Kill or Rollback

