T

Thread Synchronization:

Foundations

Two Theads, One
Shared Variable

rl := load from amount
rl :=rl - 10,000
store rl to amount

Might execute like this:

Or viceversa: T; and then T

3

2

r2 := load from amount
r2:=0.5%*r2
store r2 to amount

amount = 40,000

amount = 45,000

Two Theads, One
Shared Variable

Two threads updating shared variable amount
T: wants to decrement amount by $10K

T2 wants to decrement amount by 50%
T T2

amount := amount - 10,000; amount := amount * 0.5;

amount = 100,000

What happens when T; and T execute concurrently?
2

Two Theads, One
Shared Variable

But might also
T execute “ke this: r2 := load from amount
1

rl := load from amount
rl :=rl - 10,000
store rl to amount

r2:=0.5%*r2
store r2 to amount

amount = 50,000

One update is lost! Wrong - and very hard to debug

4



Race Conditions

Timing dependent behavior involving shared state

Behavior of race condition depends on how

threads are scheduled!

one program can generate exponentially
many schedules or interleavings

bug if any of them generates an

undesirable behavior

All possible interleavings should be safe!

5

Therac-25 [1982]

Computer-controlled radiation therapy machine

» Traasment table
Mcton

" powor swich

R _ Tharagy soon
2 5 &‘ “ inercom
Y e

omorgency oy
Swach S J 1 o TV
~ Y < <N camens
Turrtabie by | X ! L ]| |
paxstion X PN\ 241 ‘
Mool L, (N ’ $
Cortrol &Yﬂ e e
consok AN N -~ S < A
— AN S L. ~— N |
Prvter - ‘g -

[

mentor .
Dooe Room

Desplay Motion enable Boam on'oft Wght e omepaney

tominal  gutch (lostswich) ywch bt
—— —

Safety critical system
with software interlocks

they let state of element
A determine allowed
states for element B

Ex: elevator cannot
move with doors open

Beam controlled entirely
through a custom OS

Race Conditions:
Hard to Debug

Only some interleavings may produce a bug

But bad interleavings may happen very rarely

program may run 100s of times without generating
an unsafe interleaving

Compiler and processor hardware can reorder
instructions

Therac-25

Old system used a hardware interlock

Lever either in the “electron-beam” or “x-ray” position
New system was computer controlled

Much went wrong:

A synchronization failure triggered when competent nurses
used back arrow to change the data on the screen “too
quickly”
Engineers reused software from older models

it was buggy, but hardware interlocks masked the bugs
The system noted a problem and halted X-beam, displaying
“MALFUNCTION” followed by obscure error code 54

technician resumed treatment



Therac-25 Outcome

Patients received over 100x the recommended dose
of radiation

Three patients died of radiation overdose

Many cancer patients received inadequate
treatment

People died because a programmer could not write
correct code for a concurrent system

38 Year Later.... Now what?

Edsgers perspective

-Tes)'ins can on\b prove H’\e
presence 01? )Duss...

...no)’ H’\eir Q)Dsence!

Avye, theres the rub...

OS virtualizes resources
Virtualizing a resource requires managing
concurrent accesses

data structures must transition between
consistent states

Atomic actions transform state indivisibly

can be implemented by executing actions
within a critical section

10

Take a walk
on the wild side...

Lou Reed, 1972



Properties

Property: a predicate that is evaluated over a
run of the program (a trace)

“every message that is received was
previously sent”

Not everything you may want to say about a
program is a property:

“the program sends an average of 50
messages in a run”

Liveness properties

"Something good eventually happens”

A process that wishes to enter the critical
section eventually does so

Some message is eventually delivered
Medications are eventually distributed to
patients

Windows eventually boots

Every run can be extended to satisfy a
liveness property

if it does not hold in a prefix of a run, it does

not mean it may not hold eventually
15

Safety properties

"Nothing bad happens”

No more than  processes are simultaneously in the
critical section

Messages that are delivered are delivered in FIFO
order

No patient is ever given the wrong medication
Windows never crashes

A safety property is “prefix closed”:

if it holds in a run, it holds in its every prefix

14

A really cool theorem

Every property is a combination of a

safety property and a liveness property

(Alpern & Schneider)



"Critical Section

A segment of code involved in reading and writing data
shared by N threads

Used tfo protect data structures (e.g., queues, shared
variables, lists, ...)

Must be executed atomically

Key requirements:
Solution must be symmetrical for the N threads

Nothing can be assumed about the speed of the N threads,
but that their speed inside the CS is not zero

A thread that stops outside CS must not impede access to
CS for other threads

“Italians at a door syndrome” (mutual blocking) unacceptable
17

Critical section

Thread To Thread T;

while(!terminate) while(!terminate)

lock.release() lock.release()

Critical section

Thread To Thread T
while(!terminate) while(!terminate)
lock.acquire() lock.acquire()
lock.release() lock.release()

Critical section

Thread To Thread T;

while(!terminate) while(!terminate)

20



Critical Section

Mutual Exclusion: At most one thread in CS (Safety)

must be false

No deadlock: If some thread attempts fo acquire the
lock, some thread will eventually succeed (Liveness)

No starvation: Every thread that attempts to acquire
the lock eventually succeeds (Liveness)

If , then eventually

When , thread i cannot block other
threads from entering CS

Assumption: if , then eventually

21

Critical Section:
Like-to Lock (unless you do too)

Thread To Thread T;

while(!terminate) while(!terminate)

await await

Critical Section:
Like-to Lock (unless you do too)

Thread To Thread T,

while(!terminate) while(!terminate)

22

Critical Section:
Like-to Lock (unless you do too)

Thread To Thread T;

while(!terminate) while(!terminate)

while while

24



Critical Section:
Like-to Lock (unless you do too)

Thread To Thread T;
while(!terminate) while(!terminate)
await await

Critical Section:
Like-to Lock (unless you do too)

Mutual exclusion?

Critical Section:
Like-to Lock (unless you do too)

Thread To Thread T
while(!terminate) while(!terminate)
await await

Critical Section:
Like-to Lock (unless you do too)

Non Blocking?

Blocked (1)
Blocked (2)

M @-=



Once More unto the
Breach: Taking Turns

Thread To Thread T;

await await

The above condition for entering CS; is
too strong: we weaken it by adding turns

Even if , if it is Tos turn,
then To is allowed to enter CSo

Invariant I:

The new entry code then is

Thread To Thread T;

await await

Critical Section:
Taking Turns

Thread To Thread T

while(!terminate) while(!terminate)

while while

31

Critical Section:
Taking Turns

Thread To Thread T,
while(!terminate) while(!terminate)
await await

30

Critical Section:
Taking Turns

Thread To Thread T;
while(!terminate) while(!terminate)
while while

32



Interference Freedom

By executing . T1 can interfere on the
truth of ToSs assertion! (and the other way around)

In general, interference freedom T T;
requires to establish ‘ '

for all in one thread and in the oﬂ;er

Establishing
Interference Freedom
Thread To Thread T

Establishing
Interference Freedom

Thread To Thread T,
while(!terminate) while(!terminate)
while while
Establishing

Interference Freedom

Thread To Thread T;



Establishing
Interference Freedom

Thread To Thread T;

while(!terminate) while(!terminate)

while while

37

Establishing
Interference Freedom

Thread To Thread T

while(!terminate) while(!terminate)

while while

39

while(!terminate)

Taking stock

We can solve the critical section problem, as
long as we know how tfo execute multiple
operations atomically

In other words, we can solve the CS problem as
long as we can solve the CS problem...

But what if we dont execute the entry code
atomically? Where is the problem?

Establishing
Interference Freedom

Thread To Thread T;

while(!terminate)
pcr,

while while

40

No problem!



Establishing
Interference Freedom

Thread To Thread T;
while(!terminate) while(!terminate)
while per while No problem!

Establishing
Interference Freedom

Thread To Thread T

while(!terminate) while(!terminate)

PCr,

No problem!

while

Thread To

while(!terminate)

while

Thread To

while(!terminate)

while

Establishing
Interference Freedom

PCr,

Thread T;

while(!terminate)

Problem!

Establishing
Interference Freedom

PCr,

Thread T;

while(!terminate)

No problem!




Petersons Algorithm Petersons Algorithm: Safety

Threod T Thread T
while('termnate) while(! terminate)
Thread To Thread T: \
while(!terminate) while(!terminate)
while while
Mutual exclusion?
45 46

Peterson: Non-blocking Peterson: Deadlock-free

while(!terminate) while(!terminate) while(!terminate) while(!terminate)
while T5PC \while TSP while TS PC \while
Tos PC
Blocking Scenario: T, before NCS,, T, stuck at while loop Blocking Scenario: T, and T, at the while loop, before entering critical section

47 48



