Two Theads, One
Shared Variable

Two threads updating shared variable amount

o T: wants to decrement amount by $10K

Thread Synchronization:
Foundations

o T, wants to decrement amount by 50%
T2

amount := amount - 10,000; amount := amount * 0.5;

amount = 100,000

What happens when T; and T2 execute concurrently?
2

Two Theads, One Two Theads, One

Shared Variable Shared Variable

Might execute like this: : But might also
i execute like this: r2 := load from amount

r2 := load from amount

d 3 S 2
BBE= 0.5 * r2 rl := load from amount
store r2 to amount rl :=rl - 10,000

store rl to amount

rl := load from amount

rl :=rl - 10,000 r2:=0.5*r2
store rl to amount store r2 to amount

amount = 40,000 amount = 50,000

v

Or viceversa: T;and then T2 amount = 45,000 One update is lost! Wrong - and very hard to debug

3 4

Race Conditions:
Hard to Debug

Race Conditions

Timing dependent behavior involving shared state : .
@ Only some interleavings may produce a bug
@ Behavior of race condition depends on how
fhreads are scheduledl @ But bad interleavings may happen very rarely

o program may run 100s of times without generating

O one program can generate exponentially ani ahgafe interIEREIN

many schedules or interleavings
@ Compiler and processor hardware can reorder

D bug if any of them generates an incictioft

undesirable behavior

All possible interleavings should be safe!

5

Therac-25 [1982] Therac-25

@ Old system used a hardware interlock

Computer-controlled radiation therapy machine o *LeverBithor RGN ISRIFor:buiRE Lt

Teeaots it o Safety critical system @ New system was computer controlled

Treatment table

. with software interlocks @ Much went wrong:
lotion
power switch

Therapy roon o they let state of element o A synchronization failure triggered when competent nurses
A determine allowed used back arrow to change the data on the screen “too
states for element B quickly”

» Ex: elevator cannot Engineers reused software from older models

move with doors open » it was buggy, but hardware interlocks masked the bugs

Door Room
Display Motion enable Beam on/off light interlock emergency

terminal switch (footswitch) switch switches @ Beam controlled enﬂrely
through a custom OS

The system noted a problem and halted X-beam, displaying
“MALFUNCTION” followed by obscure error code 54

technician resumed treatment

Therac-25 Outcome

@ Patients received over 100x the recommended dose
of radiation

0 Three patients died of radiation overdose
O Many cancer patients received inadequate

treatment

@ People died because a programmer could not write
correct code for a concurrent system

® 38 Year Later.... Now what?

Edsgers perspective

Tes)’inﬁ can on\b prove H\e
presence oF)Duﬁs...

...no)’ H’\eir Q}Dsence!

Avye, theres the rub...

@ OS virtualizes resources
@ Virtualizing a resource requires managing
concurrent accesses

0 data structures must transition between
consistent states

o0 Atomic actions transform state indivisibly

» can be implemented by executing actions
within a critical section

Take a walk
on the wild side...

Lou Reed, 1972

Properties

Property: a predicate that is evaluated over a
run of the program (a trace)

“every message that is received was
previously sent”

Not everything you may want to say about a
program is a property:

“the program sends an average of 50
messages in a run”

Liveness properties

@ "Something good eventually happens”

o A process that wishes o entfer the critical
section eventually does so

D Some message is eventually delivered

0 Medications are eventually distributed to
patients

o Windows eventually boots

@ Every run can be extended to satisfy a
liveness property

o if it does not hold in a prefix of a run, it does

not mean it may not hold eventually
15

Safety properties

@ “"Nothing bad happens”

o No more than k processes are simultaneously in the
critical section

D Messages that are delivered are delivered in FIFO
order

o No patient is ever given the wrong medication
o Windows never crashes

@ A safety property is “prefix closed”:

o if it holds in a run, it holds in its every prefix

14

A really cool theorem

Every property is a combination of a
safety property and a liveness property

(Alpern & Schneider)

"Critical Section

@ A segment of code involved in reading and writing data
shared by N threads

o Used to protect data structures (e.g., queues, shared
variables, lists, ...)

@ Must be executed atomically

@ Key requirements:
o Solution must be symmetrical for the N threads

o Nothing can be assumed about the speed of the N threads,
but that their speed inside the CS is not zero

A thread that stops outside CS must not impede access to
CS for other threads

“Italians at a door syndrome” (mutual blocking) unacceptable
17

Critical section

Thread To Thread T;

while(!terminate) { while(!terminate) {

entryo entryy
CS() CSI
lock.release() lock.release()

NCS, NCS,
} J

Critical section

Thread To Thread T;
while(!terminate) { while(!terminate) {
lock.acquire() lock.acquire()

CSy CS;
lock.release() lock.release()

NCS, NCS;
}

Critical section

Thread To Thread T;

while(!terminate) { while(!terminate) {

entriyg entryy
CSy CS,
exity exity

NCS() NCSl
} }

Critical Section
@ Mutual Exclusion: At most one thread in CS (Safety)
o in(CS;) A in(CS;) must be false

@ No deadlock: If some thread attempts to acquire the
lock, some thread will eventually succeed (Liveness)

@ No starvation: Every thread that attempts to acquire
the lock eventually succeeds (Liveness)

o If at(entry;), then eventually at(CS;)

o When in(NC'S;), thread i cannot block other
threads from entering CS

@ Assumption: if in(CS;), then eventually after(CS;)

21

Critical Section:
Like-to Lock (unless you do too)

Thread To Thread T;

while(!terminate) { while(!terminate) {
ing = true iny = true
await —ing await —ing

CS() CSl
exito exity

NCS() NCSl
} }

Critical Section:
Like-to Lock (unless you do too)

Thread To Thread T;

while(!terminate) { while(!terminate) {

entryo entry;
CS() Csl
exity exity

NCS, NCS;
} Ji

Critical Section:
Like-to Lock (unless you do too)

Thread To Thread T;

while(!terminate) { while(!terminate) {

ing = true iny = true
while (iny) {} while (ing) {}
CSp CS;

exity exity

NCS() NCSl
} }

Critical Section:
Like-to Lock (unless you do too)

Thread To Thread T;

while(!terminate) { while(!terminate) {
ing = true iny = true
await —ing await —ing

CSy CS,
exity exity

NCS, NCS;
t

Critical Section:
Like-to Lock (unless you do too)

Thread To Thread T, Mutual exclusion?

while('terminate) { while(!terminate) {

m(C’SO) = ing N\ Ting
ZTL(C’Sl) = n1 A\ ing

ing := true {ing} ing := true {in}

await —iny {ing A —ing } await —ing {ing A —ing}
CSy CS,

ing := false {—ing} iny := false {—in,}

in(CSo) Ain(CSy) =

ing A —ing Aing A —ing = false

v

NCSo NCS,
} }

Critical Section:
Like-to Lock (unless you do too)

Thread To Thread T;

while(!terminate) { while(!terminate) {

ing := true {ino} ing = true {iny}
await —iny {ing A —ini} await —ing {ing A —ing}

CSo CS1

ing := false {—ing} iny := false {—in,}

NCS, NCS;
} Ji

Critical Section:
Like-to Lock (unless you do too)

Non Blocking?

Thread To Thread T,

while('terminate) { while(!terminate) {
ing := true {ing} ing := true {in}
await —iny {ing A —~ing } await —ing {iny A —ing}
CSp S

MA@ -=

(ing A iny) A (ing Aing) =
(ing Ainy) # false

ing = false { iny := false {—in,}

NCSo NCS;
} }

Blocked in(entryo) = ing A =(—iny) (1)
Blocked in(entryy) = iny A —=(=ing) (2)

Once More unto the Critical Section:
Breach: Taking Turns Taking Turns

Thread To Thread T; Thread To Thread T,
ing = true iny = true

-y ; while(!terminate) {
await —ing await —ing

while(!terminate) {
ing = true {ing A I} ing = true {ini AL}
The above condition for entering CS; is

too strong: we weaken it by adding furns

Even if inq, if it is Tos turn,
then To is allowed to enter CSo

await —iny V (turn = 0)
{ing A (miny V turn = 0) A I}

await —ing V (turn = 1)
{in1 A (=ing V turn = 1) A I}

Invariant I: turn =0V turn =1

CSO 051
ing := false {—ini NI}

The new entry code then is

Thread To Thread T; ing := false {—ing A I}

ing := true iny = true

2ok - N NCSy NCS;
await —ing V (turn = 0) await —ing V (turn = 1)

} }

Critical Section: Critical Section:
Taking Turns Taking Turns

Thread To Thread T Thread To Thread T;

while(!terminate) { while(!terminate) { while(!terminate) {

ing := true {ing A1}

while(!terminate) {

ing = true {ing A I} ing := true {iny A I} IO x{im AT}

while (iny A turn # 0);
{ing A (ming V turn = 0) AT}

while (ing A turn # 1);
{iny A (ming V turn = 1) A I}

while (ing A turn # 1); while (in #0);
{iny A (ming V turn = 1) A I} {ing N (ming ¥ turn = 0) AT}

CSy S CSo Sy

ing := false {—ing A1} iny = false {—iny A I} ing := false {—ing A1} iny = false {—iny A I}

NCSy NCS, NCSy NCS,

}

}

}

}

Interference Freedom

@ By executing in; := true, T1 can interfere on the
truth of ToS assertion! (and symmetrically for To)

{ing A (—iny V turn = 0) A I}

@ In general, interference freedom
requires fo establish

{pre(S) AP} S {P}

for all S in one thread and P in the oﬂ;er

Establishing
Interference Freedom

Thread To Thread T

{ing N1} / iny = true

{ing A (ming V turn = 0) AT}

{_\ino A I} /

Establishing
Interference Freedom

Thread To Thread T;

while(!terminate) { while(!terminate) {
ing := true {ing A I} iny = true {in1 AT}

while (iny A turn # 0); while (ing A turn # 1);
{ing A (miny V turn = 0) A I} {in1 A (ming V turn = 1) A1}

CSo CSi
ing := false {—ing A1} iny := false {—iny A I}

NCS, NCS;
} }

Establishing
Interference Freedom

Thread To Thread T;

{ino NI} v /

{ing A (ming Viturn =0)AI} X /

{-ing NI} V/ iny := false

Establishing
Interference Freedom

Thread To Thread T;
while('terminate) { while(!terminate) { ey

tomically
ing 1= true {ing A1} ing := true {in1 AI} j
turn =1 {ing NI} turn=0 {ini AT}

while (ino A turn # 1);

while (iny A turn # 0);
{ing1 A (=ing V turn = 1) A I}

{ing A (ming V turn = 0) AT}
CSo CS:
ing := false {—ing A1} iny = false {—iny A I}

NCSy NCS,
} }

Establishing
Interference Freedom

Thread To Thread T,
Operations

while(!terminate) { while(!terminate) { Gzt

atomically
ing := true {ing A I} ing = true {ing AT} j
turn=1 {ing AT} turn=0 {ini AI}

while (ing A turn # 1);

while (iny A turn # 0);
{iny A (ming V turn = 1) A I}

{ing A (ming V turn = 0) AT}

CSp CS
ing := false {—ing A1} iny = false {—iny A I}

NCS, NCS,
} }

Taking stock

@ We solved the critical section problem, as
long as we know how to execute multiple
operations atomically

o in other words, we can solve the CS problem as
long as we can solve the CS problem... sigh...

o besides, no machine instruction allows for those
operations fo execute atomically...

@ But what if we dont execute the entry code
atomically? Where is the problem?

Establishing
Interference Freedom

Thread To Thread T;
while(!terminate) { while(!terminate) {
ing = true {ino A I} _E,‘C‘L’ ing = true {ini A I} No problem!

U=l {’LTIQ/\I} turn =0 {27’71/\]}

while (ing A turn # 1);

while (iny A turn # 0);
{iny A (ming V turn = 1) A I}

{ing A (ming V turn = 0) A I}
CS() CSI

ing := false {—ing A1} iny = false {—iny A I}

NCS, NCS;
} }

Establishing
Interference Freedom

Thread To Thread T;

while(!terminate) { while(!terminate) {
ing := true {ing A I} iny = true {in1 AT}

turn =1 {’L?’ZU VAN I} turn =0 {an AN I}

P .
———‘c‘lf while (ing A turn # 1); No problem!
{ing1 A (=ing V turn = 1) A I}

while (iny A turn # 0);
{ing A (ming V turn = 0) AT}
CSp CS1

ing := false {—ing A1} iny = false {—iny A I}

NCSy NCS,
}

Establishing
Interference Freedom

Thread To Thread T

while(!terminate) { while(!terminate) {
ing := true {ing A1}

turn=1 {ing AI}

iny := true {in1 NI}
E‘cl‘; turn =0 {77?1 A I} No problem!

e assertion
yet
we

while (ing A turn # 1);
{iny A (ming V turn = 1) A I}

(2

while (iny A turn # 0);
{ing A (ming V turn = 0V at(turn = 0)) A I}

CSo CS1

ing := false {—ing A1} iny = false {—iny A I}

NCS, NCS,
} }

Establishing
Interference Freedom

Thread To Thread T;

while(!terminate) { while(!terminate) {
ing := true {ing A1}

turn=1 {ing A I} BOP L lOe {in, A I}

T =R /N T}

W e assertion
NG
wel

while (ing A turn # 1);
{in1 A (=ing V turn = 1) A I}

while (iny A turn # 0);
{ing A (miny V turn = 0) A I}
CSO 051

ing := false {—ing A1} iny := false {—iny A I}

NCS, NCS;
} }

Establishing
Interference Freedom

Thread To Thread T;

while(!terminate) { while(!terminate) {
ing := true {ing A1}

turn=1 {ing A I}

iny := true {in1 NI}
_P_cl,_’ turn =0 {inl A I} No problem!

e assertion
et
wel

while (ing A turn # 0); while (ing A turn # 1);
{ing A (ming V turn = 0V at(turn = 0)) A I} {in1 A (ming V turn = 1V at(turn = 1)) A I}

(2

CSy CSy
ing := false {—ing A1} iny = false {—iny A I}

NCS, NCS;
1 1

Petersons Algorithm Petersons Algorithm: Safety

Thread To Thread T,
while(!terminate) { while(!terminate) {
Thread To Thread T, o = true | iy o= Grme (IR

while('terminate) { while(!terminate) { pr-tr i R
ing 1= true {ing A1} ing = true {iny AT}
turn =1 {’L?’ZU VAN I} turn =0 {an AN I}

while (iny A turn # 0); while (ing A turn # 1);

{ino A (miny Vturn =0V at(turn =0)) AT} {imn1 A (ming V turn = 1V at(turn = 1)) A I} Mutual exclusion?

Sy CS; in(CSy) = {ing A (miny V turn = 0V at(turn = 0)) A T}A
ing := false {—ing A I} ing := false {—ini N1} A —at(turn = 1)A
in(CS1) = {iny A (ming V turn = 1 V at(turn = 1)) A T}A
NCSy NCS; —at(turn = 0) =
iny A itng Aturn = 0 A turn = 1 = false \/

46

Peterson: Non-blocking Peterson: Deadlock-free

while(!terminate) { while(!terminate) { while(!terminate) { while(!terminate) {
{Ry : ming A (turn =1V turn = 0)} {81 : 7ing A (turn =1V turn = 0)} {Ry : ming A (turn =1V turn = 0)} {81 : ming A (turn =1V turn = 0)}
ing = true iny := true ing = true ing := true
{Ry :ing A (turn =1V turn = 0)} {So': ey A(turmw = 1% turn = 0) } {Ry :ing A (turn =1V turn = 0)} {Ss :iny A (turn =1V turn = 0)}
aq turn =0 ap turn =1 aq turn ;=0
. o2} . « o952}
while (ing A turn # 0); LS PCy while (ing A turn # 1); e while (ing A turn # 0); T2 P while (tng A turn # 1);
{R3 :ing A (ming Vturn =0V at(ay))} {S5 :iny A (ming V turn =1V at(ap))} {R3 :ing A (miny Vturn =0V at(ay))} {S5 :iny A (ming V turn =1V at(ap))}
CSy CSy CSy CSy
{Rs} {93} {Rs} {53}
ing = false iny = false ing = false iny = false
Lt {51} {R1} {51}
¥ e NCS, NCSy p

T, before NCS,, T, stuck at while loop To and T, at the while loop, before entering critical section
Ry A S3 Aing A (turn = 0) = —ing Aing Aing A (turn = 0) = false Ry A Sy A ing A (turn = 1) A ing A (turn = 0) = (turn = 0) A (turn = 1) = false
47 48

