CPU Scheduling

(Chapters 7-11)

Context matters!

@ What if instead you are:

o the owner of an expensive container ship, and
have cargo across the world

o the head nurse managing the waiting room of an
emergency room

o a student who has to do homework in various
classes, hang out with other students and
(occasionally) sleep

N

The Problem

@ You are the cook at the State Street Diner
o Customers enter and place orders 24 hours a day

D Dishes take varying amounts of time to prepare

@ What are your goals?
o Minimize average latency
0 Minimize maximum latency

O Maximize throughput

@ Which strategy achieves your goal?

Kernel Operation
(conceptual, simplified)

Initialize devices
Initialize “first process”
while (TRUE)
0 while device interrupts pending
- handle device interrupts
O while system calls pending
- handle system calls
D if run queue is non-empty
- select a runnable process and switch to it
O otherwise
- wait for device interrupt

}

Schedulers in the OS

@ CPU scheduler selects next process to run
from the ready queue

@ Disk scheduler selects next read/write
operation

@ Network scheduler selects next packet to
send or process

@ Page Replacement scheduler selects page to
evict

Why scheduling is
challenging

@ Processes are not created equal!

o CPU-bound process: long CPU bursts

» mp3 encoding, compilation, scientific applications

G e CPU}%

o I/O-bound process: short CPU bursts

> index a file system, browse small web pages
—-.—— R | - | -

@ Problem

o dont know jobs type before running it

o jobs behavior can change over time

Scheduling processes

@ OS keeps PCBs on different queues

0 Ready processes are on ready queue - OS chooses
one tfo dispatch

o Processes waiting for I/0O are on appropriate
device queue

D Processes waiting on a condition are on an
appropriate condition variable queue

@ OS regulates PCB migration during life cycle
of corresponding process

Terminology and Meftrics

@ Job/Task

o A user request: e.g., mouse click, web request,
shell command...

@ Turnaround time
o Time elapsed between a jobs arrival and its
completion
@ Throughput

o Number of tasks completed per unit of time

More Meftrics

@ Response time

o Time between jobs arrival and first response produced
@ Initial waiting time

o Time between job’s arrival and first time job runs

@ Total waiting time

o Time on the ready queue but not running

» sum of “red” intervals below

@ Execution time: sum of “green” intervals

Response fime
depends on job:
we'll assume it
equal to the initial
waiting time

Time of |8 -
arrival —_—

Turnaround time Job completed

The Perfect Scheduler

@ Minimizes response and turnaround time
@ Maximizes throughput
@ Maximizes resource utilization (“work conserving”)

@ Meets deadlines

o think watching a video, operating car brakes, etc
® Guarantees fairness
@ Is envy-free

O no job wants to switch its schedule with another

Alas, no such scheduler exists...

Other Concerns

@ Fairness

o Equitable division of resources

@ Starvation

o Lack of progress by some job

@ Overhead

o Time wasted switching between jobs

@ Predictability

D Low variance in response time for repeated
requests

When Does the
Scheduler Run?

@ Non-preemptive

0 job runs until its actions cause it to yield CPU
> job blocks on an event (e.g., I/O or P(sem))
» Jjob explicitly yields
» job terminates
@ Preemptive
o all of the above, plus timer and other interrupts

o incurs some context switching overhead

Workload assumptions

@ Jobs arrive at the same time

o but can still be ordered w.r.t. one another

@ Once started, jobs run to completion

D unless preempted

@ Run-time of each job is known

FIFO

@ Jobs Ji, J3,J3 with compute time 12, 3, 3

o Job arrival Jq, J5, J3

| L, Average
‘Jl i s Turnaround Time:
: : (12+415+18)/3 = 15

Basic Scheduling
Algorithms

@ FIFO (First In First Out)
@ SJIF (Shortest Job First)

@ STCF (Shortest Time-to-Completion First)

O preemptive

@ Round Robin

n preemptive

FIFO

@ Jobs Ji, J3, J3 with compute time 12, 3, 3

o Job arrival Ji, Js, J3

[Lo, Average
'Jl 7 14 Turnaround Time:
: : (12+15+18)/3 = 15

Time O 18

Time O 12

o Job arrival Jo, J3, J1

Average
Turnaround Time:
(3+6+18)/3 = 9

Average turnaround time very sensitive to arrival time!

FIFO

Simple

Low overhead

No starvation

Optimal average turnaround time (with same-sized jobs)

Poor average turnaround time
when jobs have variable size

Average turnaround time
very sensitive to arrival time

Not responsive to
interactive tasks

SJF: Shortest Job First

@ Schedule jobs in order of estimated completion time

@ Optimal* average turnaround time (att)

@ Intuition att = (ri+ra+r3+ra+rs+r6)/6

T1 o T3 74 s
SJF C2 C3

@ Can switching execution order reduce response time?
xvz | |

= (ri+re+rs+rat+rs+re+(catcs—2c3))/6

*when jobs are available simultaneously

SJF: Shortest Job First

@ Schedule jobs in order of estimated completion time

@ Optimal* average turnaround time (att)

*when jobs are available simultaneously

SJF

7 +) Optimal average turnaround time
)9 The Good (when jobs are available simultaneously)
i

Pessimal in how turnaround
times can get far apart

L — (see under “starvation”)

i -
B,
I~

=
X

s

4

The Bad

Loty éa
ﬂ&

Y N £ Needs estimate of execution times
,I,)W: The Ugly

Can starve long jobs

®

Relaxing
“Same Arrival Time”

@ J; arrives at time O; .J,,J3 arrive at time 10

K - 4 Average Turnaround Time:
10 100+(110-10)+(120 -10)/3
p =103.33

Time O JJ,@ 100 110 120
arrive

@ To retain benefits of STF, we relax
“Jobs run to completion”

D use a preemptive scheduler

Shortest Process Next
(SJF for interactive jobs)

@ Enqueue in order of estimated completion time

o Use recent history as indicator of near future

@ Let t,= duration of n'" CPU burst
r,, = estimated duration of n!"* CPU burst
Tn+1 = estimated duration of next CPU burst

Tn+1= aTp+ (1 — a)t,

0<a<1 determines weight placed on past behavior

STCF: Shortest Time-to-
Completion First

@ On job arrival, scheduler schedules job with

shortest remaining time

J2, J3
arrive

i

TimeO 10 20 30

Average Turnaround Time:
((120-0) + (20-10) + (30 -10))/3 = 50

But what if the completion time is unknown?

Round Robin

@ Each process is allowed to run for a quantum

@ Context is switched (at the latest) at the end
of the quantum

@ What is a good quantum size?
o Too long, and it morphs into FIFO
D Too short, and much time lost context switching

o Typical quantum: about 100X cost of context
switch (~100ms vs. << 1ms)

Round Robin vs FIFO

@ Assuming no overhead to time slice, is Round
Robin always better than FIFO?

@ What is the least efficient way you could
get work done this semester using RR?

At least it is fair...?

@ Mix of one I/0-bound and two CPU-bound jobs
o I/0-bound: compute; go to disk; repeat

compute go to disk compute go to disk
g o —"——

1/0 Bound [wait 190 ms
fi i
Issues 1/0 Issues

we completes 1/0
Request Request

1/0
completes

CPU Bound 100ms quantum 100ms quantum

CPU Bound 100ms quantum

Time

Round Robin vs FIFO

Jobs of about equal length start at about the same time

211

Average Turnaround time
(21 + (22-1) + (23-2) + (24-3) + (25-4)) / 5
=21

FIFO/SJF

25

!

Average Turnaround time
(5 + (10-1) + (15-2) +
(20-3) + (25-4)) / 5 =13

Round Robin

No starvation
Can reduce response time

Overhead of context switching
Mix of I/O and CPU bound

Particularly bad average turnaround
for simultaneous, equal length jobs

Taking stock

@ STCF has great average turnaround time,
but very uneven response time

@ Round Robin can reduce response time, but
can have ferrible att

@ FIFO works well if jobs are short, but
otherwise is problematic for both turnaround
(unless jobs have equal size) and response
time...

Multi-level
Feedback Queue (MFQ)

@ Scheduler learns characteristics of the jobs it
is managing

D Uses the past to predict the future

@ Favors jobs that used little CPU...

O ...but can adapt when the job changes its
pattern of CPU usage

Priority Scheduling

@ Assign a number (priority) to each job and
schedule jobs in priority order

@ Reduces to STCF if 7,11 is used as priority

@ To avoid starvation, change job's priority with
time (aging)

The Basic Structure

-~ A ~—§ B @ Queues correspond to
different priority levels

o higher is better

@ Scheduler runs job in queue i
if no other job in higher
queues

@ Each queue runs RR

Problem?

Mobility Movin'On Up

@ Job starts at the top level @ A jobs behavior can change
o After a CPU-bound interval,
o If it uses full quantum before process may become 1/0 bound
giving up CPU, moves down
@ Must allow jobs to climb up
@ Otherwise, stays were it is the priority ladder...

o As simple as periodically
@ What about 1/0? placing all jobs in the top

o Job with frequent I/0 will not queue, un.ﬂl they percolate
finish its quantum and stay at down again
the same level

Problem?

Problem?

Proportional Share
Sneeeeakyyy... Scheduling

A —§ B requires a lot of CPU @ Each job receives a set fraction of CPU time

o Start at the fop queue)
, @ Several approaches (see your readings)
o If I finish my quantum, I'll be

demoted... D Lottery scheduling

» give jobs a number of lottery tickets
in proportion to the target share
» leverages randomness

O ..just give up the CPU before 4 : g
my quantum expires! o Stride scheduling (deterministic)

o Better accounting » stride « 1/tickets

» when scheduled, the job “takes a stride”; strides

o fix a jobs time budget at each { ke
add up to constitute the jobs pass

level, no matter how it is used
» scheduler chooses job with lowest pass

Linuxs CFS
(Completely Fair Scheduler

More
in the readings!

@ Tracks processes’ v(irtual)runtime (IS
for them...)

o Picks next process with lowest vruntime

@ All processes are equal when accounting
for vruntime

O but some processes are more equal than others!

@ When ftranslating runtime to vruntime, p;
receives a “discount” proportional to its weight

wetght,

wettght; X runtime;

vruntime; = vruntime; +

Single MFQ ;
Considered Harmful °

@ Contention on MFQ lock

@ Limited cache reuse

o since threads hop from processor to processor

@ Cache coherence overhead
o processor need to fetch current MFQ state
O on a uniprocessor, likely to be in the cache

o on a multiprocessor, likely to be in the cache
of another processor

» 2-3 orders of magnitude more expensive to fetch

Multiprocessor Scheduling:
Sequential Applications

@ A web server ST
o A thread per user connection

o Threads are I/0 bound
(access disk/network)

» favor short jobs!

An MFQ, right?
o Idle processors take task off MFQ

o Only one processor at a time gefs access to MFQ

o If thread blocks, back on the MFQ

To Each (Process),
its Own (MFQ)

@ Processors use affinity scheduling

o each thread is run repeatedly on the same
processors

» maximizes cache reuse

o more complex to achieve on a single MFQ

o Idle processors can steal work from other
processors

o only if it is worth the time of rewarming the
cache!

Multiprocessor Scheduling:
Parallel Applications

@ Application is decomposed in parallel tasks

o granularity roughly equal to available processors

» or poor cache reuse

o Often (e.g., MapReduce) I l I

using bulk synchronous sl
parallelism (BSP)

Barriers 7,
» tasks are roughly of \
equal length \

» progress limited by I . . I

Communlcahon

slowest processor Local computation

Scheduling Bulk
Synchronous Applications

Oblivious Scheduling)

Each process time-slices its ready list independently

Gang Scheduling

= Schedule all tasks from the same
. program together

Four applications, ® ® @ ®, each with four threads Four applications, ® ® ® @, each with four threads

o o e e®e
%1

1

3 g
g ¢’
g 2 g

Length of BSP step determined by last scheduled thread!

