
What is a shell?

Runs programs on behalf of the user

Allows programmer to create/manage set of programs

sh Original Unix shell (Bourne, 1977)

csh BSD Unix C shell (tcsh enhances it)

bash “Bourne again” shell

Every command typed in the shell starts a child process
of the shell

Runs at user-level. Uses syscalls: fork, exec, etc.

An interpreter

The Unix shell (simplified)

while(! EOF)

read input

handle regular expressions

int pid = fork() // create child

if (pid == 0) { // child here

 exec(“program”, argc, argv0,...);

}

else { // parent here

...

}

ID Name Default
Action Corresponding Event

2 SIGINT Terminate Interrupt

(e.g., CTRL-C from keyboard)

9 SIGKILL Terminate Kill program

(cannot override or ignore)

14 SIGALRM Terminate Timer signal

17 SIGCHLD Ignore Child stopped or terminated

20 SIGSTP Stop until
SIGCONT

Stop signal from terminal

(e.g., CTRL-Z from keyboard)

Asynchronous notifications in user space
Just

a

taste…

Signals (Virtualized Interrupts) Sending a Signal
Kernel delivers a signal to a destination
process, for a variety of reasons

kernel detected a system event (e.g.,
division by zero (SIGFPE) or termination of
a child (SIGCHLD) or…

a process invoked the kill systems call
requesting kernel to send another process
a signal

debugging

suspension

resumption

timer expiration

Receiving a Signal
Each signal prompts one of these default actions

terminate the process

ignore the signal

terminate the process and dump core

stop the process

continue process if stopped

Signal can be caught by executing a user-level
function called signal handler

similar to exception handler invoked in response to an
asynchronous interrupt

Process can also be suspended waiting for a signal to
be caught (synchronously)

int main() {

 pid_t pid[N];

 int i, child_status;

 for (i = 0; i < N; i++) // N forks

 if ((pid[i] = fork()) == 0) {

 while(1); // child infinite loop

 }

 /* Parent terminates the child processes */

 for (i = 0; i < N; i++) { // parent continues executing

 printf("Killing proc. %d\n", pid[i]);

 kill(pid[i], SIGINT);

 }

 /* Parent reaps terminated children */

 for (i = 0; i < N; i++) {

 pid_t wpid = wait(&child_status);

 if (WIFEXITED(child_status)) // parent checks for each child’s exit - normal exit returns 1

 printf("Child %d terminated w/exit status %d\n", wpid,

 WEXITSTATUS(child_status));

 else

 printf("Child %d terminated abnormally\n", wpid);

 }

 exit(0);

}

Signal
Example

void int_handler(int sig) {

 printf("Process %d received signal %d\n", getpid(), sig);

 exit(0);

}

int main() {

 pid_t pid[N];

 int i, child_status;

 signal(SIGINT, int_handler) // register handler for SIGINT

 for (i = 0; i < N; i++) // N forks

 if ((pid[i] = fork()) == 0) {

 while(1); // child infinite loop

 }

 /* Parent terminates the child processes */

 for (i = 0; i < N; i++) { // parent continues executing

 printf("Killing proc. %d\n", pid[i]);

 kill(pid[i], SIGINT);

 }

 /* Parent reaps terminated children */

 for (i = 0; i < N; i++) {

 pid_t wpid = wait(&child_status);

 if (WIFEXITED(child_status)) // parent checks for each child’s exit

 printf("Child %d terminated w/exit status %d\n", wpid,

 WEXITSTATUS(child_status));

 else

 printf("Child %d terminated abnormally\n", wpid);

 }

 exit(0);

}

Handler
Example

Booting an OS Kernel

Basic Input/Output System

In ROM; includes the first instructions
fetched and executed

BIOS

Bootloader
OS Kernel
Login app

Bootloader

1 BIOS copies Bootloader, checking its cryptographic hash
to make sure it has not been tampered with

Bootloader copies OS Kernel,
checking its cryptographic hash

Booting an OS Kernel

BIOS

Bootloader
OS Kernel
Login app

Bootloader

2

OS Kernel

Bootloader copies OS Kernel,
checking its cryptographic hash

Booting an OS Kernel

BIOS

Bootloader
OS Kernel
Login app

Bootloader

2

OS Kernel

Kernel initializes its data structures
(devices, interrupt vector table, etc)

Booting an OS Kernel

BIOS

Bootloader
OS Kernel
Login app

Bootloader

3

OS Kernel

Kernel: Copies first process from disk

Booting an OS Kernel

BIOS

Bootloader
OS Kernel
Login app

Bootloader

4

OS Kernel

Login app

Kernel: Copies first process from disk

Booting an OS Kernel

BIOS

Bootloader
OS Kernel
Login app

Bootloader

4

OS Kernel Login app

Changes PC and sets mode bit to 1

And the dance begins!

Threads

An abstraction for concurrency

(Chapters 25-27)

113

Rethinking

the Process Abstraction

Processes serve two key purposes:

defines the granularity at which
the OS offers isolation

address space identifies what
can be touched by the program

define the granularity at which
the OS offers scheduling and can
express concurrency

a stream of instructions
executed sequentially

App 1

OS

Hardware

114

Threads: a New Abstraction
for Concurrency

A single-execution stream of instructions that represents
a separately schedulable task

OS can run, suspend, resume a thread at any time

bound to a process (lives in an address space)

Finite Progress Axiom: execution proceeds at some
unspecified, non-zero speed

Virtualizes the processor

programs run on machine with a seemingly infinite
number of processors

Allows to specify tasks that should be run concurrently...

...and lets us code each task sequentially

115

How Threads Can Help

for (k = 0; k < n; k++)

a[k] = b[k] × c[k] + d[k] × e[k]

116

get network message from client

get URL data from disk

compose response

send response

Consider a Web server

Overlapping I/O &
Computation

Request 1

Thread 1

Request 2

Thread 2

get network message
(URL) from client

(disk access latency)

get URL from disk

send data over network

get network message
(URL) from client

(disk access latency)

get URL from disk

send data over network

Time
Total time is less than Request 1 + Request 2

117

Why Threads?

To express a natural program structure

updating the screen, fetching new data, receiving user
input — different tasks within the same address space

To exploit multiple processors

different threads may be mapped to distinct processors

To maintain responsiveness

splitting commands, spawn threads to do work in the
background

Masking long latency of I/O devices

do useful work while waiting

118

Multithreaded Processing
Paradigms

Dispatcher Workers

Dispatcher/Workers

119

Queue

Request

Queue

Request

Specialists

Request

PipelineSpecialists

All You Need is Love

(and a stack)

All threads within a process share

heap

global/static data

libraries

Each thread has separate

program counter

registers

stack

120

A simple API
Syscall Description

void

thread_create

(thread, func, arg)

Creates a new thread in thread, which will
execute function func with arguments arg.

void

thread_yield()

Calling thread gives up processor. Scheduler can
resume running this thread at any time

int

thread_join

(thread)

Wait for thread to finish, then return the value
thread passed to thread_exit.

May be called only once for each thread.

void

thread_exit

(ret)

Finish caller; store ret in caller’s TCB and wake
up any thread that invoked thread_join(caller).

121

Preemption

Preemptive

yield automatically upon clock interrupts

true of most modern threading systems

Non-preemptive

explicitly yield to pass control to other threads

true of CS4411 P1 project

One Abstraction,

Two Implementations
Kernel Threads

each thread has its own PCB in the kernel

PCBs of threads mapped to the same process
point to the same physical memory

visible (and schedulable) by kernel

User Threads

one PCB for the process

each thread has its own Thread Control Block
(TCB) [implemented in the host process’ heap]

implemented entirely in user space; invisible to
the kernel

Kernel-level Threads

Kernel knows about threads
existence, and schedules them
as it does processes

Each thread has a separate
PCB

PCBs of threads mapped in the
same process have

same address space

page table base register

different PC, SP, registers,
interrupt stack

Emacs

Mail

0xFFFFFFFF

Apache

0x00000000

Stack 2

Stack 1

Heap

Data

Instructions

Kernel

PCBs

User-level Threads

Run OS-like code in user space

real OS is unaware of threads

holds a single PCB for all
user threads within the same
process

each thread has associated a
Thread Control Block (TCB)
kept by process in user space

User-level threads incur lower
overhead than kernel-level
threads…

…but kernel level threads
simplify system call handling
and scheduling

Emacs

Mail

0xFFFFFFFF

Apache

0x00000000

Heap

(includes stacks)

Data

Instructions

Kernel

PCBs

“the” Stack

Kernel- vs. User-level Threads

Kernel-level Threads User-Level Threads

Ease of
implementation

Easy to implement: just like
process, but with shared

address space

Requires implementing user-level
schedule and context switches

Handling system
calls

Thread can run blocking
systems call concurrently

Blocking system call blocks all
threads: needs OS support for

non-blocking system calls

(scheduler activations)

Cost of

context switch

Thread requires three context
switches

Thread switch efficiently
implemented in user space

Kernel- vs. User-level
Thread Switching

Thread 1 Thread 2

User

Space

Kernel

Space

1
K

K 2

K
3

U

Threads

considered harmful

Creating a thread or process for each
unit of work (e.g., user request) is
dangerous

High overhead to create & delete
thread/process

Can exhaust CPU & memory resource

Thread/process pool controls resource
use

Allows service to be well conditioned

output rate scales to input rate

excessive demand does not
degrade pipeline throughput

Th
ro

ug
hp

ut
Load

Well conditioned
Not well conditioned

128

