Virtualizing the CPU Process Life Cycle

@ OS keeps a PCB for each process

@ It has space to hold a “frozen”

Process Control Block
version of the processs state 5
Program counter Stack Pir 7
Process status (ready, running, etc) Re%i;;ers @
CPU registers UID s

= Priority
CPU scheduling info List of open files

Memory management info Process status

, Kernel stack ptr
Account info Location in Memory
1/0 status info Location of executable
on disk

to be saved when the process
relinquishes the CPU

D and reloaded when the process reacquires the CPU

Process Life Cycle

Admitted to
the Ready

(i

PCB: being created PCB: being created
Registers: uninitialized Registers: uninitialized

Process Life Cycle

Admitted to
the Ready
queue

PCB: on the Ready queue
Registers: pushed by kernel
code onto interrupt stack

Admitted to
the Ready
queue

PCB: on Ready queue
Registers: pushed onfto inferrupt
stack (SP saved in PCB)

Process Life Cycle

Admitted to
the Ready
queue

PCB: currently executing
Registers: popped from
interrupt stack into CPU

Admitted to
the Ready
queue

PCB: currently executing
Registers: popped from
interrupt stack into CPU

Process Life Cycle

Admitted to
the Ready
queue

PCB: on specific waiting queue
(I/0 device, lock, etc.)
Registers: on interrupt stack

Admitted to
the Ready
queue

blocking call
completion

PCB: currently executing
Registers: popped from
interrupt stack into CPU

blocking call
e.g., read(), wait()

blocking call
e.g., read(), wait(Q)

Process Life Cycle

Admitted to
the Ready
queue

blocking call
completion

PCB: on Ready queue
Registers: on interrupt stack

Admitted to
the Ready
queue

blocking call
completion

PCB: on Finished queue,
ultimately deleted
Registers: no longer needed

blocking call
e.g., read(), wait()

done
exit()

blocking call
e.g., read(), wait(Q)

Invariants
to keep in mind

At most one process/core running at any time

When CPU in user mode, current process is
RUNNING and its interrupt stack is empty

If process is RUNNING
o its PCB not on any queue
o it is not necessarily in USER mode

If process is RUNNABLE or WAITING

o its registers are saved at the top of its interrupt stack
o its PCB is either

» on the READY queue (if RUNNABLE)

» on some WAIT queue (if WAITING)

If process is a ZOMBIE
o its PCB is on FINISHED queue

Process Life Cycle

Admitted to
the Ready
queue
done
exit()

blocking call blocking call
completion e.g., read(), wait(Q)

Cleaning up Zombies

@ Process cannot clean up itself (why?)

@ Process can be cleaned up

0 by some other process, checking for zombies
before returning to RUNNING state

o or by parent which waits for it &
» but what if parent turns into a zombie first? ‘ \ @

\Y " 3 A
o or by a dedicated “reaper” process y

@ Linux uses a combination

o if alive, parent cleans up child that it is waiting for

o if parent is dead, child process is inherited by the
initial process, which is continually waiting

How to Yield/Wait?

@ Must switch from executing the current

process to executing some other READY process
o Current process: RUNNING — READY
o Next process: READY — RUNNING

1. Save kernel registers of Current on its interrupt stack
2. Save kernel SP of Current in its PCB
3. Restore kernel SP of Next from its PCB

4. Restore kernel registers of Next from its interrupt stack

Yielding Starting a New Process

ctx_switch: //ip already pushed
pushq %rbp
pushq %rbx

pushq %r15 ctx_start:

shq %rl4 : j & > G 5 ;
Eﬁsh: %rl3 struct pcb “current, “next; pushq %rbp void createProcess(func){
pushq %rl2 pushq Jerbx void *SP;

pushq %rll void yield(){ Puz:q j:i current->state = READY;
pushq %

pushq . readyQueue.add(current);
assert(current->state == RUNNING 9 Y [
pushq (); pushq %rl3 struct pcb *next = malloc(...);

pushq current->state = RUNNABLE; pushq %ri2 next->func = func;

mg ;:zr(//rsrs') readyQueue.add(current); ’;32:3 ;:i:) next->state = RUNNING;
Popq %rbp next = scheduler(); pushq %r9 Fo nextlop ol

o o] e = i
PoPq frbx next->state = RUNNING; j pushq %r8 i sst Pusg/;,
popq %rl5 ‘ . i o movq %rsp, (%rdi) F = i
bope o ctx_switch(¤t->sp, next->sp) b o * _ _sp = UPC;
popq %rl3 . current = next; retq ctx_start(¤t->sp, SP)
popq %ri2 s
popq %ril
PoPq
PopPq
Popq
retq

Three Flavors of
Context Switching

@ What if no process is READY? @ Interrupt: from user fo kernel space

o scheduler() would return NULL — aargh! o on system call, exception, or interrupt
o Px user stack — Px interrupt stack

Anybody there?

@ No panic on the Titanic:
o OS always runs a low priority process, in an @ Yield: between two processes, inside kernel
infinite loop executing the HLT instruction o from one PCB/interrupt stack to another

& halts CPU nH R U o Px interrupt stack — Py interrupt stack
o Interrupt handler executes yield() if some other

process is put on the Ready queue @ Return from interrupt: from kernel to user space

o with the homonymous instruction
o Px interrupt stack — Px user stack

Switching between System Calls to
Processes Create a New Process

Process 1 Process 2 @& Windows

o CreateProcess(...);
. Save Process 1 user registers

read(file) resuiiie . Save Process 1 kernel registers @ Unix (Linux)

and restore Process 2 kernel o fork() + exec(...)
‘ registers

: return . Restore Process 2 user registers
disk_read() from

interrupt

CreateProcess (Simplified) fork (actual form)

process identifier

if (!CreateProcess(int pid = fork(Q);
NULL, // No module name (use command line)
argv[l], // Commmand line
NULL, // Process handle not inheritable
NULL, // Thread handle not inheritable
FALSE, // Set handle inheritance to FALSE
o, // No creation flags .but needs exec(...)
NULL, // Use parent's environment block
NULL, // Use parent's starting directory
&esi, // Pointer to STARTUPINFO structure
&epi) // Ptr to PROCESS_INFORMATION structure

)
[Windows]

Kernel Actions to Creating and managing
Create a Process processes

@ fork()

Syscall Descripti
allocate ProcessID ZSEC escription

initialize PCB m Create a child process as a clone of the current process. Return to both
parent and child. Return childs pid to parent process; return O to child

o
o create and initialize new address space
o

Run application prog in the current process with the specified args

inform scheduler new process is READY (prog, args) (replacing any code and data that was present in process)

o exec(program, argumenfs) Pause until a child process has exited

0 load program into address space

Tell kernel current process is complete and its data structures
o copy argumen’rs into address space's memory (stack, heap, code) should be garbage collected. May keep PCB.

o initialize h/w context to start execution at “start” i Send an interrupt of a specified type fo a process
(a bit of an overdramatic misnomer...)

@ CreateProcess(...) does both

In action In action

Process 13

Process 13 Process 13
Program A

Program A Program A

1 pid = fork(); | pid = fork(); pid = fork();
if (pid==0) if (pid==0) - if (pid==0)
exec(B); exec(B); exec(B);
else else i else
wait(&status); wait(&status); wait(&status);

Process 14
Program B

| pid = fork();
Y
o5t
eyse
wait(&status);

In action

Process 13 Process 13
Program A Program A

pid = fork(); pid = fork();
if (pid==0) if (pid==0)
exec(B); exec(B);
else i else
wait(&status); wait(&status);

Process 14
Program B

main() §

exit(3);
t

