III1. Timer Inferrupts

® Hardware timer

D can be set to expire after specified delay
(time or instructions)

o when it does, control is passed back to the
kernel

@ Other interrupts (e.g. I/0O completion) also
give control to kernel

Interrupt Management

é

4——% | inferrupt
q—w—-—-
interrupt | controller

Maskable interrupts
D can be turned off by the CPU for critical processing
Nonmaskable interrupts

D indicate serious errors (power out warning,
unrecoverable memory error, etc.)

Interrupt Management

4—— | inferrupt
q—-v.—m“
interrupt controller

Interrupt controllers implements interrupt priorities:
o Inferrupts include descriptor of interrupting device

o Priority selector circuit examines all interrupting
devices, reports highest level to the CPU

o Controller can also buffer interrupts coming from
different devices

» more on this later...

Types of Interrupts

Exceptions
@ process missteps (e.g. division by zero)
o attempt to perform a privileged instruction

o sometime on purpose! (breakpoints) -

@ synchronous/non-maskable System Ca“sﬁmps

OS service
Interrupts @ synchronous/non-

@ HW device requires OS service maskqble

@ user program requests

o timer, I/O device, interprocessor
@ asynchronous/maskable

Interrupt Handling

® Two objectives
0 handle the interrupt and remove the cause
o restore what was running before the interrupt
» state may have been modified on purpose
@ Two “actors” in handling the interrupt
o the hardware goes first

o the kernel code takes control by running the
interrupt handler

Handling Interrupts: HW

@ On inferrupt, hardware:
o sets supervisor mode (if not set already)
o disable (masks) interrupts (partially privileged)

D pushes PC, SP, and PSW | nef'els | dnfercupls; | conition codes

of user program on interrupt stack

sets PC to point to the first instruction of the
appropriate interrupt handler Interrupt Vector

» depends on interrupt type VSRRl handler

System Call handler

» interrupt handler specified in
Page fault handler

interrupt vector loaded at boot time

A Tale of Two Stack Pointers

@ Interrupt is a program: it needs a stack!
D so, each process has two stacks pointers:
» one when running in Kernel mode

» another when running in user mode

@ Why not using the user-level stack pointer?

D user SP may be badly aligned or pointing to non
writable memory

user stack may not be large enough, and may spill to
overwrite important data

security:
» kernel could leave sensitive data on stack

> pointing SP to kernel address could corrupt kernel

Handling Interrupts: SW

@ We are now running the interrupt handler!
o IH first pushes the registers’ contents on the
interrupt stack (part of the PCB)
» need registers fo run the IH

» only saves necessary registers (thats why done in
SW, not HW)

Typical Interrupt
Handler Code

HandleInterruptX:
PUSH %Rn }

only need to save registers not

saved by the handler function
PUSH %R1

CALL _handleX

POP %R1

} resfore the registers saved above
POP %Rn

RETURN_FROM_INTERRUPT

Starting a new process:
the recipe

1. Allocate & imtialize PCB
2. Setup intial page table (Lo initialize a new address space)
3. Load progras intro address space
4. Allocate wser—level and kernel/—leve! stacks.
s.Copy arquments (iF any) to the base of the wser—level stack
6. Simulale an interrupt
Dpush imtial PC, user SP
Bpush PSL (supervisor mode of) interrupts enabled)
2.Clear all other registers
§ KETURN_FROM_INTERRKUPT

Returning from an
Interrupt

@ Hardware pops PC, SP, PSW
@ Depending on content of PSW

o switch fo user mode
0 enable interrupts
@ From exception and system call, increment PC

on return (we dont want to execute again the
same instruction)

o on exception, handler changes PC at the base of
the stack

D on system call, increment is done by hw when saving
user level state

Interrupt Handling
on x86

User-level 4
Registers Kernel
prOCGSS Stack segment Offset

Code Code segmen aEswp E’jrt/roffset Code
foo() { Ycs:EIP” rogram handler() {
while(...) { e pusha

X = X+1; EFLAGS Flags
y=y-2

Other '
Registers:
EAX, EBX,

Interrupt Stack

Interrupt Handling

on X86

User-level Registers

Process

Codé SSESP e
foo() {

Program

while(..) { CSBIP fower
X = X+1; EFLAGS [Floss
yi=ly=2
} Other
} Registers:
EAX, EBX,

Kernel
Code

handler() §
pusha

Inferrupt Stack

Hardware performs these steps

. Change mode bit

. Disable interrupts

. Save key registers to temporary location
. Switch ontfo the kernel interrupt stack

Interrupt Handling
on x86

Registers

User-level
Process

Code SS:ESP
foo() §

whiEI — CS:EIP
X = X+1; EFLAGS
y=y-2

} Other
} Registers:

EAX, EBX,

Hardware performs these|steps

Change mode bit

Kernel
Code

handler() {
pusha

Interrupt Stack

SS:ESP

CS:EIP

EFLAGS

18

2. Disable interrupts
3. Save key registers fo temporary location
4. Switch onto the kernel interrupt stack

5

. Push key registers onto new stack

Interrupt Handling

on x86

User-level Registers

Process

Code SS:ESP
foo() {

while(...) § e
X = X+1; EFLAGS
y =y-2

} Other
} Registers:
EAX, EBX,

Kernel
Code

handler() §
pusha

Interrupt Stack

Hardware performs these steps

. Change mode bit

. Disable interrupts

. Save key registers to temporary location
. Switch ontfo the kernel interrupt stack

. Push key registers onto new stack

Interrupt Handling

on x86

User-level Registers

Process

Cods SS:ESP
foo() §

while(..) { CS:EIP
X = X+1; EFLAGS
) = -2

} Other
} Registers:
EAX, EBX,

Hardware performs these|steps

. Change mode bit

Kernel
Code

handler() {
pusha

Interrupt Stack

SS:ESP

CS:EIP

EFLAGS

. Disable interrupts
. Save key registers to temporary location
. Switch onto the kernel interrupt stack

. Push key registers onto new stack
. Save error code (optional)

SSIESP

CSEIP

EFLAGS

Interrupt Handling

on X86

User-level Registers

Process

Code
foo() {

whilele) T | — cS:EIP
X = X+1; EFLAGS
yi=ly=2
} Other

} Registers:

EAX, EBX,

SS:ESP

Hardware performs these|steps

. Change mode bit
. Disable interrupts

Kernel
Code

handler() §
pusha

Inferrupt Stack

SSIESP.

CSEIP

EFLAGS

Error

. Save key registers to temporary location
. Switch onto the kernel interrupt stack

. Push key registers onto new stack
. Save error code (optional)

Interrupt Handling
on x86

Registers

User-level
Process

Code SS:ESP
foo() §

Kernel

Code

whiEI CS:EIP

X = X+1; EFLAGS
y=y-2
} Other
} Registers:
EAX, EBX,

Hardware performs these steps

. Change mode bit

. Disable interrupts
. Save key registers to temporary location
. Switch onto the kernel interrupt stack

handler() {
pusha
}

Interrupt Stack

SSIESP

CSEIP

EFLAGS

Error

. Push key registers onto new stack
. Save error code (optional)
. Transfer control to interrupt handler

Software (handler) performs this step
8. Handler pushes all registers on stack

Interrupt Handling

on x86

User-level Registers

Process

Code SS:ESP
foo() {

Kernel

Code

while(...) § e
X = X+1; EFLAGS
y =y-2

} Other
} Registers:
EAX, EBX,

Hardware performs these|steps

. Change mode bit
. Disable interrupts

handler() §
pusha

Interrupt Stack

SSESP.

CS:EIP

EFLAGS

Error

. Save key registers to temporary location
. Switch onto the kernel interrupt stack

BRSNS crep

ave e%

ﬁ apdesr Rethes ab fﬁﬂ!#%‘fﬂ Husdnek

Interrupt Handling

on x86

Registers

User-level
Process

Cods SS:ESP
foo() §

Kernel

Code

while(..) { CS:EIP
X = X+1; EFLAGS
) = -2
} Other

} Registers:

EAX, EBX,

Hardware performs these steps
. Change mode bit

. Disable interrupts
. Save key registers to temporary location
. Switch onto the kernel interrupt stack
. Push key registers onto new stack
. Save error code (optional)
. Transfer control to interrupt handler

handler() {
pusha

Interrupt Stack

SSIESP

CSEIP

EFLAGS

Error

All Registers:
SS, ESP, EAX,
EBX...

Software (handler) performs this step
8. Handler pushes all registers on stack

Interrupt Safety

@ Kernel should disable device interrupts as little
as possible

o interrupts are best serviced quickly

@ Thus, device interrupts are often disabled selectively

D e.g., clock interrupts enabled during disk interrupt
handling

@ This leads to potential “race conditions”

o systems behavior depends on timing of uncontrollable
events

Making code
interrupt-safe

@ Make sure interrupts are disabled
while accessing mutable data!

@ But dont we have locks?

o Consider void function
{
lock(mtx);

/* code */
) unlock(mtx);

Is function thread-safe? Is function interrupt-safe?

Operates correctly when accessed Operates correctly when called again
simultaneously by multiple threads (re-entered) before it completes

To make it so, grab a lock To make it so, disable interrupts

Interrupt Race Example

@ Disk interrupt handler enqueues a task to be
executed after a particular time

o while clock interrupts are enabled

@ Clock interrupt handler checks queue for tasks
to be executed

0 may remove tasks from the queue

@ Clock interrupt may happen during enqueue

Concurrent access to a shared
data structure (the queue!)

Example of
Interrupt-Safe Code

void enqueue(struct task *task) {
int level = interrupt_disable();
/* update queue */
interrupt_restore(level);

}

@ Why not simply re-enable interrupts?

o Say we did. What if then we call enqueue from
code that expects interrupts fo be disabled?
» Oops...

0 Instead, remember interrupt level at time of call;
when done, restore that level

Many Standard C Functions

are not Interrupt-Safe System calls

@ Pure system calls are interrupt-safe @ Programming interface to the services

o e.g., read(), write(), etc. the OS provides:

] , d input/write t
@ Functions that dont use global data are penclimbut/write 1EEgseD

interrupt-safe create/read/write/delete files

But they create new processes
are all

thread-safe! send/receive network packets

o e.g., strlen(), strepy(), etc.

@ malloc(), free (), and printf() are not

interrupt-safe get the time / set alarms

o must disable interrupts before using it in an terminate’ clgent-progess
interrupt handler

0 and you may not want to anyway (printf() is huge!)

The Skinny Executing a System Call

Web Servers
Simple and powerful CorFiSi) @ Process:
interface allows POM e e

. o Calls system call function in library
separation of concern

Emai . :
Web Browsers b o Places arguments in registers and/or pushes them onto user stack

o Eases innovation in

@ Much care spent in
user space and HW Portable OS Library

IR teridttisecure o Places syscall type in a dedicated register

" D . DL TR G o Executes syscall machine instruction
Narrow waist" makes it - Systemcall o e.g., parameters first
o highly portable | inferface copied to kernel space, o Kernel

o robust (small attack Portable OS Kernel g = cked o0 Executes syscall interrupt handler

» to prevent them from
surface) beif]g changed after o Places result in dedicated register

Internet IP layer also x86 ARM PowerPC they are checked! o Executes RETURN_FROM_INTERRUPT
offers skinny interface 10Mbps/100Mbps/1Gbps Ethernet

@ Process:

LRIl gl g o Executes RETURN_FROM_FUNCTION

Graphics accellerators | op screens

Executing read System Call

int main(arge, argv){

}

PC read(fd, buffer, nbytes)

user space

kernel space

stack frame
for main()

UPC: user program counter
USP: user stack pointer
KSP: kernel stack pointer

interrupt
$ stack

note: interrupt stack is empty while process running

int main(arge, argv){

}

c read(fd buffer, nbytes)

_read:
mov READ, %R0

syscall < uUPC
return

stack frame
for main()

user space

kernel space

nbytes

&buffer

fd

user
stack

¢

interrupt
stack

UPC: user program counter

USP: user stack pointer

KSP: kernel stack pointer

note: interrupt stack is empty while process running

Executing read System Call

int ma.in(argc argv){

}

c= read(fd buffer, nbytes)
PC—

_read:
mov READ, %R0
syscall
return

user space

kernel space

Usp —

stack frame
for main()

UPC: user program counter
USP: user stack pointer
KSP: kernel stack pointer

interrupt
* stack

note: inferrupt stack is empty while process running

int main(arge, argv){

}

c read(fd buffer, nbytes)

_read:
mov READ, %R0

syscall € UPC
return

user space

kernel space

stack frame
for main()

stack frame
for _read

$ user
stack

+

interrupt
stack :

UPC: user program counter
USP: user stack pointer
KSP: kernel stack pointer

note: interrupt stack is empty while process running

Executing read System Call

int main(argc argv){

c= rea.d(fd buffer, nbytes)

_read:
mov READ, %R0
syscall

return YT UPC

kernel space

user space

stack frame
for main()

stack frame
for _read

HandleIntrSyscall:
push %Rn <

push %R1
call __handleSyscall
pop %R1

pop %Rn
return_from_interrupt

Executing read System Call

interrupt
$ stack

int ma.in(argc argv){

c= read(fd buffer, nbytes)

_read:

mov READ, %R0
syscall

return YT UPC

Executing read System Call

int main(arge, argv){

c read(fd buffer, nbytes)

_read:
mov READ, %R0

syscall
return uPC

kernel space

user space

stack frame
for main()

stack frame
for _read

user
stack

HandleIntrSyscall:
push %Rn

push %R1 c
call __handleSyscall
pop %R1

pop %Rn
return_from_interrupt

[rmr———— == =

kernel space

user space

stack frame
for main()

stack frame
for _read

HandleIntrSyscall:
push %Rn €

push %R1
call __handleSyscall
pop %R1

pop %Rn
return_from_interrupt

[r=r———m == =

USP, UPC,

|
PSW

interrupt
* stack

Executing read System Call

USP, UPC,
PSW

int main(arge, argv){

saved registers

interrupt
* stack

c read(fd buffer, nbytes)

_read:

mov READ, %R0

syscall
return UPC

kernel space

user space

rmr———— == =

USP, UPC,

|
. PsSwW

stack frame
for main()

saved registers

stack frame
for _read

$ user
stack

interrupt
$ stack

HandleIntrSyscall:
push %Rn

push %R1
call handleSyscall
pop %R1

pop %Rn
return_from_interrupt

int handleSyscall(int type){
switch (type) {
case READ: ...
}

Executing read System Call What if read needs

to block?
int AR _— ' , @ read may need to block if

" o It reads from a terminal
T . = tack g for | o It reads from disk, and block is not in cache
= ; 4 handleSyscall() |
mov READ, %RO .

syscall o It reads from a remote file server

return YT UPC
interrupt

Lot i We should run another process!
user space :

HandleIntrSyscall:
push %Rn

e ,--* |int handleSyscall(int type) {
push % et A

call _handleSyscall_ - Smm;ézyge) {

pop %R1 (}za,se E D
i;op %Rn

return_from_interrupt

