
III. Timer Interrupts

Hardware timer

can be set to expire after specified delay
(time or instructions)

when it does, control is passed back to the
kernel

Other interrupts (e.g. I/O completion) also
give control to kernel

Interrupt Management

Interrupt controllers implements interrupt priorities:

Interrupts include descriptor of interrupting device

Priority selector circuit examines all interrupting
devices, reports highest level to the CPU

Controller can also buffer interrupts coming from
different devices

more on this later…

interrupt
controllerinterrupt

Interrupt Management

Maskable interrupts

can be turned off by the CPU for critical processing

Nonmaskable interrupts

indicate serious errors (power out warning,
unrecoverable memory error, etc.)

interrupt
controllerinterrupt

System calls/traps

user program requests
OS service

synchronous/non-
maskable

Types of Interrupts

Interrupts

HW device requires OS service

timer, I/O device, interprocessor

asynchronous/maskable

Exceptions

process missteps (e.g. division by zero)

attempt to perform a privileged instruction

sometime on purpose! (breakpoints)

synchronous/non-maskable

Interrupt Handling

Two objectives

handle the interrupt and remove the cause

restore what was running before the interrupt

state may have been modified on purpose

Two “actors” in handling the interrupt

the hardware goes first

the kernel code takes control by running the
interrupt handler

A Tale of Two Stack Pointers
Interrupt is a program: it needs a stack!

so, each process has two stacks pointers:

one when running in kernel mode

another when running in user mode

Why not using the user-level stack pointer?

user SP may be badly aligned or pointing to non
writable memory

user stack may not be large enough, and may spill to
overwrite important data

security:

kernel could leave sensitive data on stack

pointing SP to kernel address could corrupt kernel

Handling Interrupts: HW

On interrupt, hardware:

sets supervisor mode (if not set already)

disable (masks) interrupts

pushes PC, SP, and PSW
of user program on interrupt stack

sets PC to point to the first instruction of the
appropriate interrupt handler

depends on interrupt type

interrupt handler specified in
interrupt vector loaded at boot time

Interrupt Vector

I/O interrupt handler

System Call handler

Page fault handler

…

Condition codesinterrupts
enabled bit

kernel
mode bit

(partially privileged)

Handling Interrupts: SW

We are now running the interrupt handler!

IH first pushes the registers’ contents on the
interrupt stack (part of the PCB)

need registers to run the IH

only saves necessary registers (that’s why done in
SW, not HW)

Typical Interrupt
Handler Code

HandleInterruptX:

PUSH %Rn

PUSH %R1
…

CALL _handleX

POP %R1

POP %Rn
…

}

} restore the registers saved above

only need to save registers not
saved by the handler function

RETURN_FROM_INTERRUPT

Returning from an
Interrupt

Hardware pops PC, SP, PSW

Depending on content of PSW

switch to user mode

enable interrupts

From exception and system call, increment PC
on return (we don’t want to execute again the
same instruction)

on exception, handler changes PC at the base of
the stack

on system call, increment is done by hw when saving
user level state

1. Allocate & initialize PCB
2. Setup initial page table (to initialize a new address space)
3. Load program intro address space
4. Allocate user-level and kernel-level stacks.
5.Copy arguments (if any) to the base of the user-level stack
6. Simulate an interrupt

a)push initial PC, user SP
b)push PSW (supervisor mode off, interrupts enabled)

7.Clear all other registers
8.RETURN_FROM_INTERRUPT

Starting a new process:
the recipe

Interrupt Handling

on x86

User-level

Process Registers Kernel

Code
foo() {

 while(...) {

 x = x+1;

 y = y-2

 }

}

Stack

Code

handler() {

 pusha

 ...

}

Interrupt Stack

EFLAGS

Other
Registers:

EAX, EBX,

...

SS:ESP

Stack segment Offset

CS:EIP

Code segment OffsetStack
pointer

Program

counter

Flags

Interrupt Handling

on x86

User-level

Process Registers Kernel

Code
foo() {

 while(...) {

 x = x+1;

 y = y-2

 }

}

Stack

Code

handler() {

 pusha

 ...

}

Interrupt Stack

Other
Registers:

EAX, EBX,

...

EFLAGS

SS:ESP
CS:EIP

1. Change mode bit

2. Disable interrupts

3. Save key registers to temporary location

4. Switch onto the kernel interrupt stack

EFLAGS

SS:ESP
CS:EIP

Stack
pointer

Program

counter

Flags

Hardware performs these steps

Interrupt Handling

on x86

User-level

Process Registers Kernel

Code
foo() {

 while(...) {

 x = x+1;

 y = y-2

 }

}

Stack

Code

handler() {

 pusha

 ...

}

Interrupt Stack

Other
Registers:

EAX, EBX,

...

EFLAGS

SS:ESP
CS:EIP

1. Change mode bit

2. Disable interrupts

3. Save key registers to temporary location

4. Switch onto the kernel interrupt stack

5. Push key registers onto new stack

EFLAGS

SS:ESP

CS:EIP

Hardware performs these steps

Interrupt Handling

on x86

User-level

Process Registers Kernel

Code
foo() {

 while(...) {

 x = x+1;

 y = y-2

 }

}

Stack

Code

handler() {

 pusha

 ...

}

Interrupt Stack

Other
Registers:

EAX, EBX,

...

EFLAGS

SS:ESP
CS:EIP

1. Change mode bit

2. Disable interrupts

3. Save key registers to temporary location

4. Switch onto the kernel interrupt stack

5. Push key registers onto new stack

EFLAGS

SS:ESP

CS:EIPHardware performs these steps

Interrupt Handling

on x86

User-level

Process Registers Kernel

Code
foo() {

 while(...) {

 x = x+1;

 y = y-2

 }

}

Stack

Code

handler() {

 pusha

 ...

}

Interrupt Stack

Other
Registers:

EAX, EBX,

...

EFLAGS

SS:ESP
CS:EIP

1. Change mode bit

2. Disable interrupts

3. Save key registers to temporary location

4. Switch onto the kernel interrupt stack

5. Push key registers onto new stack

6. Save error code (optional)

EFLAGS

SS:ESP

CS:EIPHardware performs these steps

Interrupt Handling

on x86

User-level

Process Registers Kernel

Code
foo() {

 while(...) {

 x = x+1;

 y = y-2

 }

}

Stack

Code

handler() {

 pusha

 ...

}

Interrupt Stack

Other
Registers:

EAX, EBX,

...

EFLAGS

SS:ESP
CS:EIP

1. Change mode bit

2. Disable interrupts

3. Save key registers to temporary location

4. Switch onto the kernel interrupt stack

5. Push key registers onto new stack

6. Save error code (optional)

EFLAGS

SS:ESP

CS:EIP

Error

Hardware performs these steps

Software (handler) performs this step

Interrupt Handling

on x86

User-level

Process Registers Kernel

Code
foo() {

 while(...) {

 x = x+1;

 y = y-2

 }

}

Stack

Code

handler() {

 pusha

 ...

}

Interrupt Stack

Other
Registers:

EAX, EBX,

...

EFLAGS

SS:ESP
CS:EIP

EFLAGS

SS:ESP

CS:EIP

Error

8. Handler pushes all registers on stack

1. Change mode bit

2. Disable interrupts

3. Save key registers to temporary location

4. Switch onto the kernel interrupt stack

5. Push key registers onto new stack

6. Save error code (optional)

7. Transfer control to interrupt handler

Hardware performs these steps

1. Change mode bit

2. Disable interrupts

3. Save key registers to temporary location

4. Switch onto the kernel interrupt stack

5. Push key registers onto new stack

6. Save error code (optional)

7. Transfer control to interrupt handler

Hardware performs these steps

Interrupt Handling

on x86

User-level

Process Registers Kernel

Code
foo() {

 while(...) {

 x = x+1;

 y = y-2

 }

}

Stack

Code

handler() {

 pusha

 ...

}

Interrupt Stack

Other
Registers:

EAX, EBX,

...

EFLAGS

SS:ESP
CS:EIP

EFLAGS

SS:ESP

CS:EIP

Error

8. Handler pushes all registers on stack
Software (handler) performs this step

Interrupt Handling

on x86

User-level

Process Registers Kernel

Code
foo() {

 while(...) {

 x = x+1;

 y = y-2

 }

}

Stack

Code

handler() {

 pusha

 ...

}

Interrupt Stack

Other
Registers:

EAX, EBX,

...

EFLAGS

SS:ESP
CS:EIP

EFLAGS

SS:ESP

CS:EIP

Error

All Registers:

SS, ESP, EAX,

EBX,...

8. Handler pushes all registers on stack
Software (handler) performs this step

1. Change mode bit

2. Disable interrupts

3. Save key registers to temporary location

4. Switch onto the kernel interrupt stack

5. Push key registers onto new stack

6. Save error code (optional)

7. Transfer control to interrupt handler

Hardware performs these steps

Interrupt Safety

Kernel should disable device interrupts as little
as possible

interrupts are best serviced quickly

Thus, device interrupts are often disabled selectively

e.g., clock interrupts enabled during disk interrupt
handling

This leads to potential “race conditions”

system’s behavior depends on timing of uncontrollable
events

Interrupt Race Example

Disk interrupt handler enqueues a task to be
executed after a particular time

while clock interrupts are enabled

Clock interrupt handler checks queue for tasks
to be executed

may remove tasks from the queue

Clock interrupt may happen during enqueue

Concurrent access to a shared
data structure (the queue!)

Making code

interrupt-safe

Make sure interrupts are disabled
while accessing mutable data!

But don’t we have locks?

Consider void function ()
{

lock(mtx);
/* code */
unlock(mtx);

}

Is function thread-safe?
Operates correctly when accessed
simultaneously by multiple threads

Is function interrupt-safe?
Operates correctly when called again
(re-entered) before it completes

To make it so, grab a lock To make it so, disable interrupts

Example of

Interrupt-Safe Code

Why not simply re-enable interrupts?

Say we did. What if then we call enqueue from
code that expects interrupts to be disabled?

Oops…

Instead, remember interrupt level at time of call;
when done, restore that level

void enqueue(struct task *task) {
int level = interrupt_disable();
/* update queue */
interrupt_restore(level);

}

Many Standard C Functions
are not Interrupt-Safe
Pure system calls are interrupt-safe

e.g., read(), write(), etc.

Functions that don’t use global data are
interrupt-safe

e.g., strlen(), strcpy(), etc.

malloc(), free (), and printf() are not
interrupt-safe

must disable interrupts before using it in an
interrupt handler

and you may not want to anyway (printf() is huge!)

But they
are all

thread-safe!

System calls

Programming interface to the services
the OS provides:

read input/write to screen

create/read/write/delete files

create new processes

send/receive network packets

get the time / set alarms

terminate current process

…

The Skinny

System call

interface

Portable OS Kernel

Portable OS Library

x86 ARM PowerPC

10Mbps/100Mbps/1Gbps Ethernet

1802.11 a/b/g/n SCSI

Graphics accellerators LCD Screens

Web Browsers Email

Databases Word Processing
Compilers

Web Servers
Simple and powerful
interface allows
separation of concern

Eases innovation in
user space and HW

“Narrow waist" makes it

highly portable

robust (small attack
surface)

Internet IP layer also
offers skinny interface

Much care spent in
keeping interface secure

e.g., parameters first
copied to kernel space,
then checked

to prevent them from
being changed after
they are checked!

Executing a System Call
Process:

Calls system call function in library

Places arguments in registers and/or pushes them onto user stack

Places syscall type in a dedicated register

Executes syscall machine instruction

Kernel

Executes syscall interrupt handler

Places result in dedicated register

Executes RETURN_FROM_INTERRUPT

Process:

Executes RETURN_FROM_FUNCTION

Executing read System Call
int main(argc, argv){
	 …
	 read(fd, buffer, nbytes)
	 …
} stack frame

for main()

UPC

USP

KSP

user
stack

interrupt

stack

user space

kernel space

UPC: user program counter

USP: user stack pointer

KSP: kernel stack pointer

 note: interrupt stack is empty while process running

int main(argc, argv){
	 …
	 c = read(fd, buffer, nbytes)
	 …
}

Executing read System Call

stack frame

for main()

USP

KSP

user space

kernel space

UPC: user program counter

USP: user stack pointer

KSP: kernel stack pointer

 note: interrupt stack is empty while process running

_read:
	 mov READ, %R0
	 syscall
	 return

user
stack

interrupt

stack

UPC

Executing read System Call

stack frame

for main()

USP

KSP

user space

kernel space

UPC: user program counter

USP: user stack pointer

KSP: kernel stack pointer

 note: interrupt stack is empty while process running

nbytes_read:
	 mov READ, %R0
	 syscall
	 return

user
stack

UPC

interrupt

stack

int main(argc, argv){
	 …
	 c = read(fd, buffer, nbytes)
	 …
}

&buffer

fd

Executing read System Call

stack frame

for main()

USP

KSP

user space

kernel space

stack frame

for _read

_read:
	 mov READ, %R0
	 syscall
	 return

user
stack

UPC

interrupt

stack

int main(argc, argv){
	 …
	 c = read(fd, buffer, nbytes)
	 …
}

UPC: user program counter

USP: user stack pointer

KSP: kernel stack pointer

 note: interrupt stack is empty while process running

Executing read System Call

stack frame

for main()

USP

KSP

user space

kernel space

stack frame

for _read

_read:
	 mov READ, %R0
	 syscall
	 return

user
stack

UPC

HandleIntrSyscall:
push %Rn
…
push %R1
call __handleSyscall	
pop %R1
…
pop %Rn
return_from_interrupt

KPC

interrupt

stack

int main(argc, argv){
	 …
	 c = read(fd, buffer, nbytes)
	 …
}

Executing read System Call

stack frame

for main()

USP

KSP

user space

kernel space

stack frame

for _read

_read:
	 mov READ, %R0
	 syscall
	 return

user
stack

UPC

HandleIntrSyscall:
push %Rn
…
push %R1
call __handleSyscall	
pop %R1
…
pop %Rn
return_from_interrupt

KPC

USP, UPC,

PSW

interrupt

stack

int main(argc, argv){
	 …
	 c = read(fd, buffer, nbytes)
	 …
}

Executing read System Call

stack frame

for main()

USP

KSP

user space

kernel space

stack frame

for _read

_read:
	 mov READ, %R0
	 syscall
	 return

user
stack

UPC

HandleIntrSyscall:
push %Rn
…
push %R1
call __handleSyscall	
pop %R1
…
pop %Rn
return_from_interrupt

KPC

USP, UPC,

PSW

saved registers

interrupt

stack

int main(argc, argv){
	 …
	 c = read(fd, buffer, nbytes)
	 …
}

Executing read System Call

stack frame

for main()

USP

KSP

user space

kernel space

stack frame

for _read

_read:
	 mov READ, %R0
	 syscall
	 return

user
stack

UPC

HandleIntrSyscall:
push %Rn
…
push %R1
call __handleSyscall	
pop %R1
…
pop %Rn
return_from_interrupt

KPC

USP, UPC,

PSW

saved registers

interrupt

stack

int handleSyscall(int type){
	 switch (type) {
	 case READ: …
	 }
}

int main(argc, argv){
	 …
	 c = read(fd, buffer, nbytes)
	 …
}

Executing read System Call

stack frame

for main()

USP
KSP

user space

kernel space

stack frame

for _read

_read:
	 mov READ, %R0
	 syscall
	 return

user
stack

UPC

HandleIntrSyscall:
push %Rn
…
push %R1
call __handleSyscall	
pop %R1
…
pop %Rn
return_from_interrupt

KPC

USP, UPC,

PSW

saved registers

interrupt

stack

int handleSyscall(int type){
	 switch (type) {
	 case READ: …
	 }
}

stack frame for
handleSyscall()

int main(argc, argv){
	 …
	 c = read(fd, buffer, nbytes)
	 …
}

What if read needs

to block?

read may need to block if

It reads from a terminal

It reads from disk, and block is not in cache

It reads from a remote file server

We should run another process!

