From Program fo Process

To make the programs code and data come alive
need a CPU

The pro cesSsS need memory — the process’ address space

for data, code, stack, heap

A running program need registers

PC, SP, regular registers
need access to I/0
list of open files Q/ /y

L -um"' \l/

How the OS Keeps Track

A First Cut at the API
of a Process

Process Control

Create A process has code Block
causes the OS to create a new process OS must track program counter pc
Stack Ptr
Registers
Destroy A process has a stack P>
forcefully terminates a process 0S must track stack pointer . :iz;::ﬁ'es
Wiait (for the process to end process starus
( P ) OS stores state of process Kernel stack pfr
Other controls in Process Control Block (PCB)
e.g. fo suspend or resume the process Data (program instructions, stack & heap)

resides in memory, metadata is in PCB
Status

running? suspended? blocked? for how long?



You'll Never Walk Alone

Machines run (and thus OS must manage)
multiple processes

how should the machines resources be mapped
to these processes?

OS as a referee...

Isolating Applications

Buggy apps can crash
other apps

Buggy apps can crash 0S

Buggy apps can hog all

resources

Operating System

Malicious apps can violate

Reading and writing memory, privacy of other apps

managing resources, accessing I/0...

Malicious apps can
change the OS

You'll Never Walk Alone

Machines run (and thus OS must manage)
multiple processes

how should the machines resources be mapped

to these processes?
Enter the illusionist! {ﬁ,

give every process the illusion of running

on a private CPU Virtualize
. the CPU
which appears slower than the machines
give every process the illusion of running
. Virtuali
on a private memory Iriualize
memory

which may appear larger(??) than the machine’s

Mechanism and Policy

Mechanism
what the system can do

Policy
what the system should do

Mechanisms should not determine policies!



The Process, Refined

An abstraction for isolation

the execution of an application
program with restricted rights

The enforcing mechanism
0s must not hinder functionality

still efficient use of hardware

Hardware

enable safe communication

Special @’

The process abstraction is enforced by the
kernel

all kernel is in the OS
not all the OS is in the kernel
(why not? robustness)

widgets libraries, window managers etc

The Process, Refined

0s

Hardware

An abstraction for isolation

the execution of an application
program with restricted rights

The enforcing mechanism
must not hinder functionality

still efficient use of hardware

enable safe communication

How can the OS
Enforce Restricted Rights?

Easy: kernel interprets each instruction!

0s

Hardware

slow

many instructions are safe:
do we really need tfo
involve the OS?



How can the OS Amongst our weaponry are
enforce restricted rights? such diverse elements as...

Mechanism: Dual Mode Operation Privileged instructions
in user mode, no way to execute potentially unsafe
hardware to the rescue: use a instructions
- mode bit . .
Memory isolation
in user mode, processor checks : . ,
in user mode, memory accesses outside a process

- every instruction memory region are prohibited

al ‘ ‘ in kernel mode, unrestricted rights

0s Timer interrupts

hardware to the rescue (again)
Hardware to make checks efficient kernel must be able fo periodically regain control from

running process

I. Privileged instructions I. Privileged instructions

Set mode bit But how can an app do I/0 then?

1/0 ops system calls achieve access to kernel mode
only at specific locations specified by OS

Memory management ops
¥ manag P Executing a privileged instruction while in

Disable interrupts user mode (naughty naughty...) causes a

processor exception....

Set ti
er rimers ..which passes control to the kernel

Halt the processor



Crossing the line

user process

user process executing ——

calls system call

mode bit =1

return from system call

\ /
trap mode bit :=1
mode bit := 0 return
kernel \ mode bit = 0

execute system call

II. Memory Isolation

Step 2: Address Translation

Implement a function mapping

Virtual

a486d9

into

Advantages:

isolation
relocation
data sharing
multiplexing

Physical

II. Memory Protection

Step 1: Virtualize Memory

Virtual address space: set of memory
addresses that process can “touch”

CPU works with virtual addresses
Physical address space: set of memory
addresses supported by hardware

Virtual

address
space

Isolation

mapped segments

DLLs

Stack

2%
s

Heap

Initialized data

Code

At all times, functions used by different processes
map to disjoint ranges — aka “Stay in your room!”




Relocation Relocation

The range of the function used by a process The range of the function used by a process
can change over time can change over time —“Move to a new room!”

)

Data Sharing Multiplexing

Create illusion of almost infinite memory by
changing domain (set of virtual addresses) that

processes to the same physical address — . :
“Share the kitchen!” maps to a given range of physical addresses —
ever lived in a studio?

04d26a %

Map different virtual addresses of distinct



Multiplexing

The domain (set of virtual addresses) that map
to a given range of physical addresses can
change over time

O] 0

Multiplexing

The domain (set of virtual addresses) that map
to a given range of physical addresses can
change over time

Multiplexing

The domain (set of virtual addresses) that map
to a given range of physical addresses can
change over time

0\

SO (O

Multiplexing

The domain (set of virtual addresses) that map
to a given range of physical addresses can
change over time



More Multiplexing

At different times, different processes can map
part of their virtual address space into the
same physical memory — change tenants!

A simple mapping mechanism:
Base & Bound

MAXqys

Memory
Exception
LOgiCdl no thSiCdl 1500
addresses addresses  [pS physicat
CPU &) ves @ address
\ —
1000
500 1000
Bound Base
Register Register °

More Multiplexing

At different times, different processes can map
part of their virtual address space into the
same physical memory — change tenants!

On Base & Limit

Contiguous Allocation: contiguous virtual

addresses are mapped fo contiguous physical
addresses

Isolation is easy, but sharing is hard

Two copies of emacs: want to share code, but
have heap and stack distinct...

And there is more...
Hard to relocate

Hard to account for dynamic changes in both
heap and stack



III1. Timer Inferrupts

Hardware timer

can be set fo expire after specified delay
(time or instructions)

when it does, control is passed back to the
kernel

Other interrupts (e.g. I/O completion) also
give control to kernel

Interrupt Management

interrupt
interrupt ~ controller

Maskable interrupts
can be turned off by the CPU for critical processing

Nonmaskable interrupts

indicate serious errors (power out warning,
unrecoverable memory error, etc.)

Inferrupt Management

interrupt Gl Sty
interrupt controller ‘

Interrupt controllers implements interrupt priorities:
Interrupts include descriptor of interrupting device

Priority selector circuit examines all interrupting
devices, reports highest level to the CPU

Controller can also buffer interrupts coming from
different devices

more on this later...

Types of Interrupts

Exceptions
process missteps (e.g. division by zero)
attempt to perform a privileged instruction
sometime on purpose! (breakpoints)

synchronous/non-maskable System calls/traps

user program requests
OS service

Interrupts synchronous/non-

HW device requires OS service maskable

timer, I/0 device, interprocessor

asynchronous/maskable



Interrupt Handling

Two objectives
handle the interrupt and remove the cause
restore what was running before the interrupt

state may have been modified on purpose
Two “actors” in handling the interrupt

the hardware goes first

the kernel code takes control by running the
interrupt handler

Handling Interrupts: HW

On interrupt, hardware:
sets supervisor mode (if not set already)
disable (masks) interrupts (partially privileged)
pushes PC, SP, and PSW  Si7l anaicdPly Condition codes
of user program on interrupt stack

sets PC to point to the first instruction of the

appropriate interrupt handler Interrupt Vector
1/0 interrupt handler

depends on interrupt type

interrupt handler specified in

. . Page fault handler
interrupt vector loaded at boot time 2

System Call handler

A Tale of Two Stack Pointers

Interrupt is a program: it needs a stack!
so, each process has two stacks pointers:
one when running in kernel mode

another when running in user mode

Why not using the user-level stack pointer?

user SP may be badly aligned or pointing to non
writable memory

user stack may not be large enough, and may spill fo
overwrite important data

security:
kernel could leave sensitive data on stack
pointing SP to kernel address could corrupt kernel

Handling Interrupts: SW

We are now running the interrupt handler!

IH first pushes the registers’ contents on the
interrupt stack (part of the PCB)
need registers fo run the IH

only saves necessary registers (thats why done in
SW, not HW)



Typical Interrupt
Handler Code

HandleInterruptX:

PUSH %Rn only need to save registers not

saved by the handler function
PUSH %R1

CALL _handleX

POP %R1

restore the registers saved above
POP %Rn

RETURN_FROM_INTERRUPT

Starting a new process:
the recipe

I. Allocate & intialize PCB
2. Setup intial Page Zable (o inmtialize a nees address 5/&Ce>
3. Load progras intro address space
4. Allocate wser—level! and kerne/—leve! stacks.
s.Copy arquments (i any) 2o the base of the wuser—level stack
6. Simulate an interrupt
Dpush imtial PC, user SP
Bpush PSW (supervisor mode of ¥y interrupts enabled)
2.Clear all other registers

§ KETURN_FROM_INTERKUPT

Returning from an
Interrupt

Hardware pops PC, SP, PSW

Depending on content of PSW

switch to user mode

enable interrupts

From exception and system call, increment PC
on return (we dont want to execute again the
same instruction)

on exception, handler changes PC at the base of

the stack

on system call, increment is done by hw when saving

user level state

Interrupt Handling
on x86

User-level
prOCGSS Stack segment
Code Code segmen RESP
foo() { R
while(..) { CS:EIP
X = X+1; EFLAGS
y=y-2
Other
} Registers:
EAX, EBX,
Stack

Registers Kernel

Offset

Stack
E’j"c'e/'OFfset Code

Program handler() {

counter
pusha
Flags

,

Interrupt Stack




Interrupt Handling

on X86

Kernel
Code

handler() §
pusha

Interrupt Stack

User-level .
Registers
Process
CO(:;' ‘ SS:ESP soitr
foo . Program
while(..) { CS:EIP [
X = X+1; EFLAGS  [Floss
y=y-2
} Other
} Registers:
EAX, EBX,
Stack
Hardware performs these steps

Change mode bit

Disable interrupts

Save key registers to temporary location
Switch onto the kernel interrupt stack

Interrupt Handling

on x86

User-level .
Registers
Process
C°de{ SS:ESP
foo() X
while(..) § | — CS:EIP
X = X+1; EFLAGS
y=y-2
} Other
} Registers:
EAX, EBX,
Stack
Hardware performs these|steps
Change mode bit

Kernel
Code

handler() {
pusha

Interrupt Stack

SS:ESP

CS:EIP

EFLAGS

Disable interrupts

Save key registers to temporary location
Switch onto the kernel interrupt stack
Push key registers onto new stack

Interrupt Handling

User-level

Process

Code

foo() {
while(...) §
X = X+1;
y=y-2

Stack

on x86

Registers

SS:ESP
CS:EIP

EFLAGS

Other
Registers:
EAX, EBX,

Kernel
Code

handler() §
pusha

Interrupt Stack

Hardware performs these steps
Change mode bit

Disable interrupts

Save key registers to temporary location
Switch onto the kernel interrupt stack
Push key registers onto new stack

Interrupt Handling

User-level
Process

Code

foo() {
while(...) {
X = X+1;
y=y-2

Stack

on x86

Registers

SS:ESP
CS:EIP

EFLAGS

Other
Registers:
EAX, EBX,

Hardware performs these|steps
Change mode bit

Kernel
Code

handler() {
pusha

Interrupt Stack

SS:ESP

CS:EIP

EFLAGS

Disable inferrupts

Save key registers to temporary location
Switch onfo the kernel interrupt stack
Push key registers onto new stack

Save error code (optional)

SSIESP

CSEIP

EFLAGS




Interrupt Handling

on X86

User-level .
Registers
Process
C°‘:)e{ SS:ESP
foo X
while(.) 1 L CS:EIP
X = X+1; EFLAGS
y=y-2
} Other
} Registers:
EAX, EBX,
Stack

Hardware performs these|steps

Change mode bit
Disable interrupts

Kernel
Code

handler() §
pusha

Interrupt Stack

SSESP

CS:EIP

EFLAGS

Error

Save key registers to temporary location
Switch onto the kernel interrupt stack

Push key registers onto new stack
Save error code (optional)

Interrupt Handling

on x86

User-level .
Registers Kernel
Process
Code{ SS:ESP Code
foo() . handler() {
CS:EIP
while(...) {
X = X+1; EFLAGS |_ P'L.J'Shu
y=y-2 3
} Other
} Registers:
EAX, EBX,
Stack Interrupt Stack

Hardware performs these steps

Change mode bit

Disable interrupts
Save key registers to temporary location
Switch onto the kernel interrupt stack

SSIESP

CSEIP

EFLAGS

Error

Push key registers onto new stack
Save error code (optional)
Transfer control to interrupt handler

Software (handler) performs this step
Handler pushes all registers on stack

Interrupt Handling

on x86

User-level .
Registers Kernel
Process
Code SSESP Code
foo() { B handler() §
while(...) § CS:EIP pusha
X = X+1; EFLAGS
y=y-2 }
Other
} Registers:
EAX, EBX,

Stack Interrupt Stack

Hardware performs these|steps

Change mode bit
Disable interrupts

SSESP

CS:EIP

EFLAGS

Error

Save key registers to temporary location
Switch onto the kernel interrupt stack

f‘?’Z‘IEeZQ}\“iaJ onfofg;#\‘lssﬁﬂs step
WHPQ'Ferr RISHHESI ql& rﬁmmrp% Husdnek

Interrupt Handling

on x86

User-level .
Registers Kernel
Process
Code{ SS:ESP Code
foo() . handler() {
while(...) { CS:EIP pusha
X = X+1; EFLAGS
y=y-2 3
Other
} Registers:
EAX, EBX,

Stack Interrupt Stack

Hardware performs these steps

Change mode bit

Disable interrupts

Save key registers to temporary location
Switch onfo the kernel interrupt stack
Push key registers onto new stack

Save error code (optional)

Transfer control to interrupt handler

SSIESP

CS:EIP

EFLAGS

Error

All Registers:
S5, ESP, EAX,
EBX...

Software (handler) performs this step
Handler pushes all registers on stack




Interrupt Safety Interrupt Race Example

Kernel should disable device interrupts as little Disk interrupt handler enqueues a task fo be
as possible executed after a particular time
interrupts are best serviced quickly while clock interrupts are enabled
Thus, device interrupts are often disabled selectively Clock interrupt handler checks queue for tasks
e.g., clock interrupts enabled during disk interrupt to be executed
handling may remove tasks from the queue
This leads to po’ren’rial “race conditions” Clock in'l'errupf may happen during enqueue
systems behavior depends on timing of uncontrollable
events Concurrent access to a shared

data structure (the queue!)

Making code Example of
interrupt-safe Interrupt-Safe Code

Make sure interrupts are disabled
hil . table data! void enqueue(struct task *task) {
while accessing mutable data: int level = interrupt_disable();

/* update queue */

But dont we have locks? /
interrupt_restore(level);

Consider  void function () )
{
lock(mtx); . .
/*cc()de}g Why not simply re-enable interrupts?

y rnlook(mt); Say we did. What if then we call enqueue from

code that expects interrupts to be disabled?

Is function thread-safe? Is function interrupt-safe? Oops..
Operates correctly wnen accessed Operates correctly when called again Instead, remember interrupt level at time of call;
simultaneously by multiple threads (re-entered) before it completes

when done, restore that level
To make it so, grab a lock To make it so, disable interrupts ° °



Many Standard C Functions

are not Interrupt-Safe System calls

Pure system calls are interrupt-safe Programming interface to the services

e.g., read(), write(), etc. the OS provides:

: : input/write t
Functions that dont use global data are read input/write to screen

interrupt-safe create/read/write/delete files

But they create new processes

are all

thread-safe! send/receive network packets

e.g., strlen(), strepy(), etc.

malloc(), free (), and printf() are not

interrupt-safe get the time / set alarms

must disable interrupts before using it in an terminate current process
interrupt handler

and you may not want to anyway (printf() is huge!)

The Skinny Executing a System Call

Web Servers
Simple and powerful Compilers ' Process:
interface allows Databases  VOrd Processing

. Calls system call function in library
separation of concern

Emai . .
Web Browsers mail Places arguments in registers and/or pushes them onto user stack

Eases innovation in Much care spent in

user space and HW Portable OS Library keeping interface secure Places syscall type in a dedicated register

" - . Syst I Executes syscall machine instruction
Narrow waist" makes it ystem ca e.g., parameters first
highly portable interface copied to kernel space, Kernel
robust (small attack Portable OS Kernel then checked Executes syscall interrupt handler
to prevent them from . . .

surface) being changed affer Places result in dedicated register
Internet IP layer also x86  ARM  PowerPC they are checked! Executes RETURN_FROM_INTERRUPT
offers skinny interface 10Mbps/100Mbps/1Gbps Ethernet

Process:
1802.11 a/b/g/n scsI

Executes RETURN_FROM_FUNCTION

Graphics accellerators | -p screens



Executing read System Call

Fre=r=r === == -
int main(arge, argv){ . KSPp —
|
upcC “read(fd, buffer, nbytes) .
|
} stack frame .
for main() |
usp— :
|
|
I interrupt
user , stack
user space stack

kernel space

UPC: user program counter
USP: user stack pointer
KSP: kernel stack pointer
note: interrupt stack is empty while process running

Executing read System Call

Executing read System Call

Fre=r= === == -
int main(argc argv){ . KSPp —
|
c= read(fd buffer, nbytes) .
UPC— |
} stack frame .
for main() |
_read: USP - -
mov READ, %R0 I
syscall .
return I
| interrupt
user , stack
user space stack .

kernel space

UPC: user program counter
USP: user stack pointer
KSP: kernel stack pointer
note: interrupt stack is empty while process running

Executing read System Call

Fr= = === == -
int main(arge, argv){ . KSP —
|
c read(fd buffer, nbytes) .
__________________ I
Yy T stack frame .
for main() |
—read: nbytes |
mov READ, WLOJRSC
syscall — usp &buffer .
. |
return
fd . .
| interrupt
user , stack
user space stack .

kernel space

UPC: user program counter
USP: user stack pointer
KSP: kernel stack pointer
note: interrupt stack is empty while process running

e -
int main(arge, argv){ . KSP —
|
c read(fd buffer, nbytes) .
__________________ I
} stack frame .
for main() |
_read: -
mov READ, (@Rgc s’ir:ack fran;e 1
syscall — uspP or _rea .
o |
return
| interrupt
user , stack
user space stack .

kernel space

UPC: user program counter
USP: user stack pointer
KSP: kernel stack pointer
note: interrupt stack is empty while process running



Executing read System Call

int main(argc argv){

¢ = read(fd, buffer, nbytes)

[rm = mrmm == =

L KSP —

stack frame
for main()

stack frame

for _read .
|
I interrupt
user , stack
stack

_read:
mov READ, %R0
syscall
return — UPC
user space
kernel Space HandleIntrSyscall:
push %Rn -
push %R1
call __handleSyscall
pop %R1
i;op %Rn

return_from_interrupt

KPC

Executing read System Call

int main(arge, argv){

c read(fd buffer, nbytes)

= == mm— = =

i USP, UPC,
pPsSwW

stack frame
for main()

I saved registers
L Kgp — L sared regsters |

stack frame

for _read .
[
I interrupt
user , stack
stack

_read:
mov READ, %R0
syscall
return UPC
user SPGCG
kernel Space HandleIntrSyscall:
push %Rn
push %R1
call __handleSyscall
pop %R1
;op %Rn

return_from_interrupt

— KPC

Executing read System Call

int main(arg’c argv){

¢ = read(fd, buffer, nbytes)

= = m == — = =

I USP, UPC,
. PSW
| KSP —
stack frame .
R for main() |
stack frame 1
for _read .
|
I interrupt
user , stack
stack

KPC

_read:
mov READ, %R0
syscall .
return — UPC usp
user space
kernel s pace HandleIntrSyscall:
push %Rn -
push %R1
call __handleSyscall
pop %R1
i;bp %Rn

return_from_interrupt

Executing read System Call

int main(arge, argv){

c read(fd buffer, nbytes)

Frm = === == =

i USP, UPC,
pPsw

stack frame
for main()

I saved registers
L kgp — L sered registers |

stack frame

for _read .
[
I interrupt
user , stack
stack

_read:
mov READ, %R0
syscall _
reurn —UPC | USP
user space
kernel s pace HandleIntrSyscall:
push %Rn
push %R1
call __handleSyscall
pop %R1 -
ﬁ;ap %Rn

return_from_interrupt

KPC

int handleSyscall(int type){
switch (type) {
case READ: ...
}




Executing read System Call

}

int main(arge, argv){

_read:

syscall

mov READ, %R0

return — UPC uUsp—

user space

== rmrmm == -

; USP, UPC,
PSW

stack frame
for main()

saved registers

stack frame for

handleSyscall()

stack frame | KSP—
for _read .
P
p interrupt
user L stack
stack L

HandleIntrSyscall:
push %Rn

;ush %R1
call __handleSyscall
pop %R1

pop %Rn
return_from_interrupt

* |int handleSyscall(int type){

switch (type) {
case READ: ...
; — KPC

Virtualizing the CPU

OS keeps a PCB for each process

It has space to hold a “frozen”
version of the state processs state

Program counter

Process status (ready, running, etc)

CPU registers

CPU scheduling info

Memory management info

Account info

1/0 status info

to be saved when the process

relinquishes the CPU

Process Control Block

PC
Stack Ptr
Registers
PID
UID
Priority
List of open files
Process status
Kernel stack ptr
Location in Memory
Location of executable
on disk

and reloaded when the process reacquires the CPU

What if read needs
to block?

read may need to block if

It reads from a terminal
It reads from disk, and block is not in cache

It reads from a remote file server

We should run another process!

Process Life Cycle

= G

72



Process Life Cycle Process Life Cycle

Admitted to
the Ready

PCB: being created PCB: being created
Registers: uninitialized Registers: uninitialized

73 74

Process Life Cycle Process Life Cycle

Admitted to Admitted to
the Ready the Ready Dispatch
queue Ready queue Ready

PCB: on the Ready queue PCB: currently executing
Registers: pushed by kernel Registers: popped from

code onto interrupt stack interrupt stack into CPU

75 76



Process Life Cycle Process Life Cycle

Admitted to Admitted to
the Ready Dispatch the Ready Dispatch
queue Ready queue Ready

Yield Yield
PCB: on Ready queue PCB: currently executing
Registers: pushed onto interrupt Registers: popped from
stack (SP saved in PCB) N interrupt stack into CPU B

Process Life Cycle Process Life Cycle

Admitted to Admitted to
the Ready Dispatch the Ready Dispatch
queue Ready queue Qeﬂdy

Yield Yield

blocking call blocking call blocking call
e.g., read(), wait(Q) completion e.g., read(), wait(Q)

FIC/B g:v?czeclfcck Wgzl;g e PCB: on Ready queue
' L Registers: on interrupt stack

Registers: on infterrupt stack

79 80



Process Life Cycle

the Ready Dispatch
queue Qeady

Yield

blocking call blocking call
completion e.g., read(), wait()

PCB: currently executing
Registers: popped from

interrupt stack into CPU

81

Invariants
to keep in mind

At most one process/core running at any time

When CPU in user mode, current process is
RUNNING and its interrupt stack is empty

If process is RUNNING
its PCB not on any queue
it is not necessarily in USER mode

If process is RUNNABLE or WAITING
its registers are saved at the fop of its interrupt stack
its PCB is either
on the READY queue (if RUNNABLE)
on some WAIT queue (if WAITING)
If process is a ZOMBIE
its PCB is on FINISHED queue

Process Life Cycle

Admitted to
the Ready Dispatch
queue Qeﬂdy ;
one
exit()

Yield

blocking call blocking call
completion e.g., read(), wait()

PCB: on Finished queue,
ultimately deleted

Registers: no longer needed

82

Cleaning up Zombies

Process cannot clean up itself (why?)

Process can be cleaned up

by some other process, checking for zombies
before returning to RUNNING state

or by parent which waits for it
but what if parent turns into a zombie first?
or by a dedicated “reaper” process

Linux uses a combination

if alive, parent cleans up child that it is waiting tor

if parent is dead, child process is inherited by the
initial process, which is continually waiting



How to Yield/Wait?

Must switch from executing the current
process to executing some other READY process

Current process: RUNNING READY
Next process: READY  RUNNING

Save Kernel registers of Current on its interrupt stack
Save kernel SP of Current in its PCB
Restore kernel SP of Next from its PCB

Restore kernel registers of Next from its interrupt stack

Starting a New Process

ctx_start:

pushq
pushq
pushq
pushq
pushq
pushq
pushq
pushq
pushq
pushq
movq

movq

callq

void createProcess( func )
current->state = READY;

readyQueue.add(current);
%rbp struct pcb *next = malloc(...);
%rbx next->func = func;
%15 next->state = RUNNING;
:/’”4 ctx_start(&current->sp, next->top_of_stack)
%r13 current = next;
%T‘lz }
%rll
%r10 .
%r9 void ctx_entry(){
%r8 current = next;

(*current->func)();

current->state = ZOMBIE;
finishedQueue.add(current);

next = scheduler();

next->state = RUNNING;
ctx_switch(&current->sp, next->sp)
// this location cannot be reached

%rsp, (%rdi)
%rsi, %rsp
ctx_entry

Yielding

ctx_switch: //ip already pushed

pushq
pushq
pushq
pushq
pushq
pushq
pushq
pushq
pushq
pushq
movq

movq

pushq
pushq
pushq
pushq
pushq
pushq
pushq
pushq
pushq
pushq
retq

%rbp
%rbx
%115
%rl4
%r13
%rl2
%1l

%r10
%19

%18

%rsp,
%rsi,
%rbp
%rbx
%115
%rl4
%r13
%rl2
%1l

%r10
%19

%18

struct pcb *current, *next;

void vyield()§

assert(current->state == RUNNING);
current->state = RUNNABLE;

"(/Z:::i) runQueue.add(current);
next = scheduler();
next->state = RUNNING;
ctx_switch(&current->sp, next->sp)
current = next;

Anybody there?

What if no process is READY?
scheduler() would return NULL — aargh!

To avoid armageddon

OS always runs a low priority process, in an
infinite loop executing the HLT instruction

halts CPU until next interrupt

Interrupt handler executes yield() if some other
process is put on the Ready queue



Three Flavors of
Context Switching

Interrupt: from user to kernel space
on system call, exception, or interrupt
Px user stack  Px interrupt stack

Yield: between two processes, inside kernel
from one PCB/interrupt stack to another
Px interrupt stack Py interrupt stack

Return from interrupt: from kernel to user space
with the homonymous instruction

Px interrupt stack  Px user stack

System Calls to
Create a New Process

Windows
CreateProcess(...);
Unix (Linux)

fork() + exec(...)

Switching between
Processes

Process 1 Process 2

User Save Process 1 user registers
Space read(file) resume Save Process 1 kernel registers
and restore Process 2 kernel
@ @ registers
Kernel disk_read() P?I?:rl;ln Restore Process 2 user registers
Space interrupt

CreateProcess (Simplified)

if (ICreateProcess(

NULL, // No module name (use command line)

argv[l], // Command line

NULL, // Process handle not inheritable

NULL, // Thread handle not inheritable

FALSE, // Set handle inheritance to FALSE

o, // No creation flags

NULL, // Use parent's environment block

NULL, // Use parent's starting directory

8&esi, // Pointer to STARTUPINFO structure

&pi) // Ptr to PROCESS_INFORMATION structure
)

[Windows]



Kernel Actions to

fork (actual form) Create a Process

process identifier
int pid = fork(); fork()
allocate ProcessID
initialize PCB
create and initialize new address space

.but needs exec(...) inform scheduler new process is READY

exec(program, arguments)
load program into address space
copy arguments into address spaces memory

initialize h/w context to start execution at ““start”

[Unix]
CreateProcess(...) does both

Creating and managing
processes

In action

Process 13
Program A
Syscall Description pc  Pid = fork();
if (pid==0)
Create a child process as a clone of the current process. Return to both id exec(B);
fork() parent and child. Return childs pid to parent process; return 0 to child P else
? wait(&status);
exec Run application prog in the current process with the specified args
(prog, args) (replacing any code and data that was present in process)
wait . . .
Pause until a child process has exited
(&status)
exit Tell kernel current process is complete and its data structures

(status) (stack, heap, code) should be garbage collected. May keep PCB.

kill Send an interrupt of a specified type fo a process
(pid, type) (a bit of an overdramatic misnomer...)

[Unix]



In action

Process 13 Process 13
Program A Program A
_ pid = fork(); pC pid = fork();
if (pid==0) —- if (pid==0)
] exec(B); ) exec(B);
pid else pid else
? wait(&status); 14 wait(&status);
Process 14
Program B
__pid z fork();
7, !*5?:?5““( Pe =4 'B'ir&(f: )
¢ exec(B):
| U o O
T (0] wait(&status);

What is a shell?

Job control system

Runs programs on behalf of the user

Allows programmer to create/manage set of programs

sh Original Unix shell (Bourne, 1977)
csh BSD Unix C shell (tcsh enhances it)
bash “Bourne again” shell

Every command typed in the shell starts a child process
of the shell

Runs at user-level. Uses syscalls: fork, exec, etc.

In action

Process 13 Process 13
Program A Program A
¢ — pid = fork(); pC pid = fork(); Status
if (pid==0) if (pid==0) 3
) exec(B); ) exec(B);
pid else pid else
? wait(&status); 14— wait(&status);
Process 14
Program B
PC — main() {

exit(3);
1

The Unix shell (simplified)

while(! EOF)

read input

handle regular expressions

int pid = fork() // create child

if (pid == 0) { // child here
exec(“program”, argc, argvo,...);

}

else { // parent here



Signals (Virtualized Interrupts)

Asynchronous notifications in user space

Default .
1D Name Action Corresponding Event
2 SIGINT Terminate Interrupt

(e.g., CTRL-C from keyboard)

9 SIGKILL Terminate

Kill program
(cannot override or ignore)

14 SIGALRM Terminate Timer signal

17 SIGCHLD Ignore Child stopped or terminated
Stop until Stop signal from terminal

20 SIGSTP SIGCONT (e.g., CTRL-Z from keyboard)

void int_handler(int sig) {
printf("Process %d received signal %d\n", getpid(), sig);
exit(0);

}

int main() {
pid_t pid[N];

int i, child_status; H d I
signal(SIGINT, int_handler) // register handler for SIGINT a n e r

for (i = 0; i < N; i++) // N forks
if ((pid[i] = fork()) == 0) {
while(1); // child infinite loop
}
/* Parent terminates the child processes */
for (i=0;i<N;i++) { // parent continues executing
printf("Killing proc. %d\n", pid[i]);
kill(pid[i], SIGINT);
}
/* Parent reaps terminated children */
for (i = 0; i < N;i++) §
pid_t wpid = wait(&child_status);
if (WIFEXITED(child_status)) // parent checks for each childs exit
printf("Child %d terminated w/exit status %d\n", wpid,
WEXITSTATUS(child_status));
else
printf("Child %d terminated abnormally\n", wpid);
}
exit(0);

Example

int main() {
pid_t pid[N];
int i, child_status;

for (i = 0; i <N;i++) // N forks
if ((pid[i] = fork()) == 0) {

Signal
while(1); // child infinite loop
} E l
/* Parent terminates the child processes */ xam P e

for (i =0;i<N;i++){ // parent continues executing
printf("Killing proc. %d\n", pid[i]);
kill(pid[i], SIGINT);
}
/* Parent reaps terminated children */
for (i =0;i < N;i++) {
pid_t wpid = wait(&child_status);
if (WIFEXITED(child_status)) // parent checks for each child$s exit
printf("Child %d terminated w/exit status %d\n", wpid,
WEXITSTATUS(child_status));
else
printf("Child %d terminated abnormally\n", wpid);

}
exit(0);

Kernel Operation
(conceptual, simplified)

Initialize devices
Initialize “first process”
while (TRUE) {
while device interrupts pending
- handle device interrupts Y
while system calls pending de\)\\(\g
- handle system calls o
if run queue is non-empty
- select a runnable process and switch tfo it
otherwise
- wait for device interrupt



Booting an OS Kernel Booting an OS Kernel

Bootloader Bootloader
OS Kernel OS Kernel
Login app Login app
BIOS BIOS | Bootloader
Basic Input/Output System
In ROM; includes the first instructions @ Bootloader copies OS Kernel,
fetched and executed checking its cryptographic hash

@ BIOS copies Bootloader, checking its cryptographic hash
to make sure it has not been tampered with

Booting an OS Kernel Booting an OS Kernel

Bootloader Bootloader
OS Kernel OS Kernel
Login app Login app
BIOS | Bootloader | OS Kernel BIOS | Bootloader | OS Kernel
@ Bootloader copies OS Kernel, @ Kernel initializes its data structures
checking its cryptographic hash (devices, interrupt vector table, etc)



Booting an OS Kernel

Bootloader
OS Kernel
Login app

BIOS

Bootloader

OS Kernel

Booting an OS Kernel

Bootloader
OS Kernel
Login app

@ Kernel: Copies first process from disk

BIOS

Bootloader

OS Kernel

Login app

@ Kernel: Copies first process from disk

Changes PC and sets mode bit fo 1

And the dance begins!



